mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
41 lines
1.5 KiB
HTML
41 lines
1.5 KiB
HTML
<p>Given an <code>m x n</code> binary matrix <code>mat</code>, <em>return the number of <strong>submatrices</strong> that have all ones</em>.</p>
|
|
|
|
<p> </p>
|
|
<p><strong class="example">Example 1:</strong></p>
|
|
<img alt="" src="https://assets.leetcode.com/uploads/2021/10/27/ones1-grid.jpg" style="width: 244px; height: 245px;" />
|
|
<pre>
|
|
<strong>Input:</strong> mat = [[1,0,1],[1,1,0],[1,1,0]]
|
|
<strong>Output:</strong> 13
|
|
<strong>Explanation:</strong>
|
|
There are 6 rectangles of side 1x1.
|
|
There are 2 rectangles of side 1x2.
|
|
There are 3 rectangles of side 2x1.
|
|
There is 1 rectangle of side 2x2.
|
|
There is 1 rectangle of side 3x1.
|
|
Total number of rectangles = 6 + 2 + 3 + 1 + 1 = 13.
|
|
</pre>
|
|
|
|
<p><strong class="example">Example 2:</strong></p>
|
|
<img alt="" src="https://assets.leetcode.com/uploads/2021/10/27/ones2-grid.jpg" style="width: 324px; height: 245px;" />
|
|
<pre>
|
|
<strong>Input:</strong> mat = [[0,1,1,0],[0,1,1,1],[1,1,1,0]]
|
|
<strong>Output:</strong> 24
|
|
<strong>Explanation:</strong>
|
|
There are 8 rectangles of side 1x1.
|
|
There are 5 rectangles of side 1x2.
|
|
There are 2 rectangles of side 1x3.
|
|
There are 4 rectangles of side 2x1.
|
|
There are 2 rectangles of side 2x2.
|
|
There are 2 rectangles of side 3x1.
|
|
There is 1 rectangle of side 3x2.
|
|
Total number of rectangles = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24.
|
|
</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>1 <= m, n <= 150</code></li>
|
|
<li><code>mat[i][j]</code> is either <code>0</code> or <code>1</code>.</li>
|
|
</ul>
|