1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-10 18:48:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode/originData/product-sales-analysis-i.json
2023-12-09 19:57:46 +08:00

99 lines
9.2 KiB
JSON

{
"data": {
"question": {
"questionId": "1153",
"questionFrontendId": "1068",
"boundTopicId": null,
"title": "Product Sales Analysis I",
"titleSlug": "product-sales-analysis-i",
"content": "<p>Table: <code>Sales</code></p>\n\n<pre>\n+-------------+-------+\n| Column Name | Type |\n+-------------+-------+\n| sale_id | int |\n| product_id | int |\n| year | int |\n| quantity | int |\n| price | int |\n+-------------+-------+\n(sale_id, year) is the primary key (combination of columns with unique values) of this table.\nproduct_id is a foreign key (reference column) to <code>Product</code> table.\nEach row of this table shows a sale on the product product_id in a certain year.\nNote that the price is per unit.\n</pre>\n\n<p>&nbsp;</p>\n\n<p>Table: <code>Product</code></p>\n\n<pre>\n+--------------+---------+\n| Column Name | Type |\n+--------------+---------+\n| product_id | int |\n| product_name | varchar |\n+--------------+---------+\nproduct_id is the primary key (column with unique values) of this table.\nEach row of this table indicates the product name of each product.\n</pre>\n\n<p>&nbsp;</p>\n\n<p>Write a solution to report the <code>product_name</code>, <code>year</code>, and <code>price</code> for each <code>sale_id</code> in the <code>Sales</code> table.</p>\n\n<p>Return the resulting table in <strong>any order</strong>.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nSales table:\n+---------+------------+------+----------+-------+\n| sale_id | product_id | year | quantity | price |\n+---------+------------+------+----------+-------+ \n| 1 | 100 | 2008 | 10 | 5000 |\n| 2 | 100 | 2009 | 12 | 5000 |\n| 7 | 200 | 2011 | 15 | 9000 |\n+---------+------------+------+----------+-------+\nProduct table:\n+------------+--------------+\n| product_id | product_name |\n+------------+--------------+\n| 100 | Nokia |\n| 200 | Apple |\n| 300 | Samsung |\n+------------+--------------+\n<strong>Output:</strong> \n+--------------+-------+-------+\n| product_name | year | price |\n+--------------+-------+-------+\n| Nokia | 2008 | 5000 |\n| Nokia | 2009 | 5000 |\n| Apple | 2011 | 9000 |\n+--------------+-------+-------+\n<strong>Explanation:</strong> \nFrom sale_id = 1, we can conclude that Nokia was sold for 5000 in the year 2008.\nFrom sale_id = 2, we can conclude that Nokia was sold for 5000 in the year 2009.\nFrom sale_id = 7, we can conclude that Apple was sold for 9000 in the year 2011.\n</pre>\n",
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 620,
"dislikes": 195,
"isLiked": null,
"similarQuestions": "[{\"title\": \"Product Sales Analysis II\", \"titleSlug\": \"product-sales-analysis-ii\", \"difficulty\": \"Easy\", \"translatedTitle\": null}, {\"title\": \"Product Sales Analysis IV\", \"titleSlug\": \"product-sales-analysis-iv\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Product Sales Analysis V\", \"titleSlug\": \"product-sales-analysis-v\", \"difficulty\": \"Easy\", \"translatedTitle\": null}]",
"exampleTestcases": "{\"headers\":{\"Sales\":[\"sale_id\",\"product_id\",\"year\",\"quantity\",\"price\"],\"Product\":[\"product_id\",\"product_name\"]},\"rows\":{\"Sales\":[[1,100,2008,10,5000],[2,100,2009,12,5000],[7,200,2011,15,9000]],\"Product\":[[100,\"Nokia\"],[200,\"Apple\"],[300,\"Samsung\"]]}}",
"categoryTitle": "Database",
"contributors": [],
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": null,
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "MySQL",
"langSlug": "mysql",
"code": "# Write your MySQL query statement below\n",
"__typename": "CodeSnippetNode"
},
{
"lang": "MS SQL Server",
"langSlug": "mssql",
"code": "/* Write your T-SQL query statement below */\n",
"__typename": "CodeSnippetNode"
},
{
"lang": "Oracle",
"langSlug": "oraclesql",
"code": "/* Write your PL/SQL query statement below */\n",
"__typename": "CodeSnippetNode"
},
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef sales_analysis(sales: pd.DataFrame, product: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "PostgreSQL",
"langSlug": "postgresql",
"code": "-- Write your PostgreSQL query statement below\n",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"241.2K\", \"totalSubmission\": \"298.4K\", \"totalAcceptedRaw\": 241232, \"totalSubmissionRaw\": 298381, \"acRate\": \"80.8%\"}",
"hints": [],
"solution": {
"id": "2044",
"canSeeDetail": true,
"paidOnly": false,
"hasVideoSolution": false,
"paidOnlyVideo": true,
"__typename": "ArticleNode"
},
"status": null,
"sampleTestCase": "{\"headers\":{\"Sales\":[\"sale_id\",\"product_id\",\"year\",\"quantity\",\"price\"],\"Product\":[\"product_id\",\"product_name\"]},\"rows\":{\"Sales\":[[1,100,2008,10,5000],[2,100,2009,12,5000],[7,200,2011,15,9000]],\"Product\":[[100,\"Nokia\"],[200,\"Apple\"],[300,\"Samsung\"]]}}",
"metaData": "{\"mysql\": [\"Create table If Not Exists Sales (sale_id int, product_id int, year int, quantity int, price int)\", \"Create table If Not Exists Product (product_id int, product_name varchar(10))\"], \"mssql\": [\"Create table Sales (sale_id int, product_id int, year int, quantity int, price int)\", \"Create table Product (product_id int, product_name varchar(10))\"], \"oraclesql\": [\"Create table Sales (sale_id int, product_id int, year int, quantity int, price int)\", \"Create table Product (product_id int, product_name varchar(10))\"], \"database\": true, \"name\": \"sales_analysis\", \"pythondata\": [\"Sales = pd.DataFrame([], columns=['sale_id', 'product_id', 'year', 'quantity', 'price']).astype({'sale_id':'Int64', 'product_id':'Int64', 'year':'Int64', 'quantity':'Int64', 'price':'Int64'})\", \"Product = pd.DataFrame([], columns=['product_id', 'product_name']).astype({'product_id':'Int64', 'product_name':'object'})\"], \"postgresql\": [\"Create table If Not Exists Sales (sale_id int, product_id int, year int, quantity int, price int)\\n\", \"Create table If Not Exists Product (product_id int, product_name varchar(10))\"], \"database_schema\": {\"Sales\": {\"sale_id\": \"INT\", \"product_id\": \"INT\", \"year\": \"INT\", \"quantity\": \"INT\", \"price\": \"INT\"}, \"Product\": {\"product_id\": \"INT\", \"product_name\": \"VARCHAR(10)\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create table If Not Exists Sales (sale_id int, product_id int, year int, quantity int, price int)",
"Create table If Not Exists Product (product_id int, product_name varchar(10))",
"Truncate table Sales",
"insert into Sales (sale_id, product_id, year, quantity, price) values ('1', '100', '2008', '10', '5000')",
"insert into Sales (sale_id, product_id, year, quantity, price) values ('2', '100', '2009', '12', '5000')",
"insert into Sales (sale_id, product_id, year, quantity, price) values ('7', '200', '2011', '15', '9000')",
"Truncate table Product",
"insert into Product (product_id, product_name) values ('100', 'Nokia')",
"insert into Product (product_id, product_name) values ('200', 'Apple')",
"insert into Product (product_id, product_name) values ('300', 'Samsung')"
],
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": false,
"envInfo": "{\"mysql\": [\"MySQL\", \"<p><code>MySQL 8.0</code>.</p>\"], \"mssql\": [\"MS SQL Server\", \"<p><code>mssql server 2019</code>.</p>\"], \"oraclesql\": [\"Oracle\", \"<p><code>Oracle Sql 11.2</code>.</p>\"], \"pythondata\": [\"Pandas\", \"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0</p>\"], \"postgresql\": [\"PostgreSQL\", \"<p>PostgreSQL 16</p>\"]}",
"libraryUrl": null,
"adminUrl": null,
"challengeQuestion": null,
"__typename": "QuestionNode"
}
}
}