1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-10 18:48:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/problem (English)/重新排列后的最大子矩阵(English) [largest-submatrix-with-rearrangements].html

41 lines
1.8 KiB
HTML

<p>You are given a binary matrix <code>matrix</code> of size <code>m x n</code>, and you are allowed to rearrange the <strong>columns</strong> of the <code>matrix</code> in any order.</p>
<p>Return <em>the area of the largest submatrix within </em><code>matrix</code><em> where <strong>every</strong> element of the submatrix is </em><code>1</code><em> after reordering the columns optimally.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2020/12/29/screenshot-2020-12-30-at-40536-pm.png" style="width: 500px; height: 240px;" />
<pre>
<strong>Input:</strong> matrix = [[0,0,1],[1,1,1],[1,0,1]]
<strong>Output:</strong> 4
<strong>Explanation:</strong> You can rearrange the columns as shown above.
The largest submatrix of 1s, in bold, has an area of 4.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2020/12/29/screenshot-2020-12-30-at-40852-pm.png" style="width: 500px; height: 62px;" />
<pre>
<strong>Input:</strong> matrix = [[1,0,1,0,1]]
<strong>Output:</strong> 3
<strong>Explanation:</strong> You can rearrange the columns as shown above.
The largest submatrix of 1s, in bold, has an area of 3.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [[1,1,0],[1,0,1]]
<strong>Output:</strong> 2
<strong>Explanation:</strong> Notice that you must rearrange entire columns, and there is no way to make a submatrix of 1s larger than an area of 2.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 &lt;= m * n &lt;= 10<sup>5</sup></code></li>
<li><code>matrix[i][j]</code> is either <code>0</code> or <code>1</code>.</li>
</ul>