mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
46 lines
1.8 KiB
HTML
46 lines
1.8 KiB
HTML
<p>Given an integer array <code>nums</code>, find the <strong>maximum</strong> possible <strong>bitwise OR</strong> of a subset of <code>nums</code> and return <em>the <strong>number of different non-empty subsets</strong> with the maximum bitwise OR</em>.</p>
|
|
|
|
<p>An array <code>a</code> is a <strong>subset</strong> of an array <code>b</code> if <code>a</code> can be obtained from <code>b</code> by deleting some (possibly zero) elements of <code>b</code>. Two subsets are considered <strong>different</strong> if the indices of the elements chosen are different.</p>
|
|
|
|
<p>The bitwise OR of an array <code>a</code> is equal to <code>a[0] <strong>OR</strong> a[1] <strong>OR</strong> ... <strong>OR</strong> a[a.length - 1]</code> (<strong>0-indexed</strong>).</p>
|
|
|
|
<p> </p>
|
|
<p><strong class="example">Example 1:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> nums = [3,1]
|
|
<strong>Output:</strong> 2
|
|
<strong>Explanation:</strong> The maximum possible bitwise OR of a subset is 3. There are 2 subsets with a bitwise OR of 3:
|
|
- [3]
|
|
- [3,1]
|
|
</pre>
|
|
|
|
<p><strong class="example">Example 2:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> nums = [2,2,2]
|
|
<strong>Output:</strong> 7
|
|
<strong>Explanation:</strong> All non-empty subsets of [2,2,2] have a bitwise OR of 2. There are 2<sup>3</sup> - 1 = 7 total subsets.
|
|
</pre>
|
|
|
|
<p><strong class="example">Example 3:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> nums = [3,2,1,5]
|
|
<strong>Output:</strong> 6
|
|
<strong>Explanation:</strong> The maximum possible bitwise OR of a subset is 7. There are 6 subsets with a bitwise OR of 7:
|
|
- [3,5]
|
|
- [3,1,5]
|
|
- [3,2,5]
|
|
- [3,2,1,5]
|
|
- [2,5]
|
|
- [2,1,5]</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>1 <= nums.length <= 16</code></li>
|
|
<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
|
|
</ul>
|