1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-05 15:31:43 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
Files
leetcode-problemset/leetcode-cn/problem (English)/机器人可以获得的最大金币数(English) [maximum-amount-of-money-robot-can-earn].html
2025-02-02 13:55:38 +08:00

65 lines
2.9 KiB
HTML

<p>You are given an <code>m x n</code> grid. A robot starts at the top-left corner of the grid <code>(0, 0)</code> and wants to reach the bottom-right corner <code>(m - 1, n - 1)</code>. The robot can move either right or down at any point in time.</p>
<p>The grid contains a value <code>coins[i][j]</code> in each cell:</p>
<ul>
<li>If <code>coins[i][j] &gt;= 0</code>, the robot gains that many coins.</li>
<li>If <code>coins[i][j] &lt; 0</code>, the robot encounters a robber, and the robber steals the <strong>absolute</strong> value of <code>coins[i][j]</code> coins.</li>
</ul>
<p>The robot has a special ability to <strong>neutralize robbers</strong> in at most <strong>2 cells</strong> on its path, preventing them from stealing coins in those cells.</p>
<p><strong>Note:</strong> The robot&#39;s total coins can be negative.</p>
<p>Return the <strong>maximum</strong> profit the robot can gain on the route.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">coins = [[0,1,-1],[1,-2,3],[2,-3,4]]</span></p>
<p><strong>Output:</strong> <span class="example-io">8</span></p>
<p><strong>Explanation:</strong></p>
<p>An optimal path for maximum coins is:</p>
<ol>
<li>Start at <code>(0, 0)</code> with <code>0</code> coins (total coins = <code>0</code>).</li>
<li>Move to <code>(0, 1)</code>, gaining <code>1</code> coin (total coins = <code>0 + 1 = 1</code>).</li>
<li>Move to <code>(1, 1)</code>, where there&#39;s a robber stealing <code>2</code> coins. The robot uses one neutralization here, avoiding the robbery (total coins = <code>1</code>).</li>
<li>Move to <code>(1, 2)</code>, gaining <code>3</code> coins (total coins = <code>1 + 3 = 4</code>).</li>
<li>Move to <code>(2, 2)</code>, gaining <code>4</code> coins (total coins = <code>4 + 4 = 8</code>).</li>
</ol>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">coins = [[10,10,10],[10,10,10]]</span></p>
<p><strong>Output:</strong> <span class="example-io">40</span></p>
<p><strong>Explanation:</strong></p>
<p>An optimal path for maximum coins is:</p>
<ol>
<li>Start at <code>(0, 0)</code> with <code>10</code> coins (total coins = <code>10</code>).</li>
<li>Move to <code>(0, 1)</code>, gaining <code>10</code> coins (total coins = <code>10 + 10 = 20</code>).</li>
<li>Move to <code>(0, 2)</code>, gaining another <code>10</code> coins (total coins = <code>20 + 10 = 30</code>).</li>
<li>Move to <code>(1, 2)</code>, gaining the final <code>10</code> coins (total coins = <code>30 + 10 = 40</code>).</li>
</ol>
</div>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == coins.length</code></li>
<li><code>n == coins[i].length</code></li>
<li><code>1 &lt;= m, n &lt;= 500</code></li>
<li><code>-1000 &lt;= coins[i][j] &lt;= 1000</code></li>
</ul>