<p>You are given an array of <strong>positive</strong> integers <code>nums</code> of length <code>n</code>.</p> <p>We call a pair of <strong>non-negative</strong> integer arrays <code>(arr1, arr2)</code> <strong>monotonic</strong> if:</p> <ul> <li>The lengths of both arrays are <code>n</code>.</li> <li><code>arr1</code> is monotonically <strong>non-decreasing</strong>, in other words, <code>arr1[0] <= arr1[1] <= ... <= arr1[n - 1]</code>.</li> <li><code>arr2</code> is monotonically <strong>non-increasing</strong>, in other words, <code>arr2[0] >= arr2[1] >= ... >= arr2[n - 1]</code>.</li> <li><code>arr1[i] + arr2[i] == nums[i]</code> for all <code>0 <= i <= n - 1</code>.</li> </ul> <p>Return the count of <strong>monotonic</strong> pairs.</p> <p>Since the answer may be very large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p> <p> </p> <p><strong class="example">Example 1:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [2,3,2]</span></p> <p><strong>Output:</strong> <span class="example-io">4</span></p> <p><strong>Explanation:</strong></p> <p>The good pairs are:</p> <ol> <li><code>([0, 1, 1], [2, 2, 1])</code></li> <li><code>([0, 1, 2], [2, 2, 0])</code></li> <li><code>([0, 2, 2], [2, 1, 0])</code></li> <li><code>([1, 2, 2], [1, 1, 0])</code></li> </ol> </div> <p><strong class="example">Example 2:</strong></p> <div class="example-block"> <p><strong>Input:</strong> <span class="example-io">nums = [5,5,5,5]</span></p> <p><strong>Output:</strong> <span class="example-io">126</span></p> </div> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n == nums.length <= 2000</code></li> <li><code>1 <= nums[i] <= 1000</code></li> </ul>