{ "data": { "question": { "questionId": "1390", "questionFrontendId": "1251", "boundTopicId": null, "title": "Average Selling Price", "titleSlug": "average-selling-price", "content": "
Table: Prices
\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| start_date | date |\n| end_date | date |\n| price | int |\n+---------------+---------+\n(product_id, start_date, end_date) is the primary key (combination of columns with unique values) for this table.\nEach row of this table indicates the price of the product_id in the period from start_date to end_date.\nFor each product_id there will be no two overlapping periods. That means there will be no two intersecting periods for the same product_id.\n\n\n
\n\n
Table: UnitsSold
\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| purchase_date | date |\n| units | int |\n+---------------+---------+\nThis table may contain duplicate rows.\nEach row of this table indicates the date, units, and product_id of each product sold. \n\n\n
\n\n
Write a solution to find the average selling price for each product. average_price
should be rounded to 2 decimal places.
Return the result table in any order.
\n\nThe result format is in the following example.
\n\n\n
Example 1:
\n\n\nInput: \nPrices table:\n+------------+------------+------------+--------+\n| product_id | start_date | end_date | price |\n+------------+------------+------------+--------+\n| 1 | 2019-02-17 | 2019-02-28 | 5 |\n| 1 | 2019-03-01 | 2019-03-22 | 20 |\n| 2 | 2019-02-01 | 2019-02-20 | 15 |\n| 2 | 2019-02-21 | 2019-03-31 | 30 |\n+------------+------------+------------+--------+\nUnitsSold table:\n+------------+---------------+-------+\n| product_id | purchase_date | units |\n+------------+---------------+-------+\n| 1 | 2019-02-25 | 100 |\n| 1 | 2019-03-01 | 15 |\n| 2 | 2019-02-10 | 200 |\n| 2 | 2019-03-22 | 30 |\n+------------+---------------+-------+\nOutput: \n+------------+---------------+\n| product_id | average_price |\n+------------+---------------+\n| 1 | 6.96 |\n| 2 | 16.96 |\n+------------+---------------+\nExplanation: \nAverage selling price = Total Price of Product / Number of products sold.\nAverage selling price for product 1 = ((100 * 5) + (15 * 20)) / 115 = 6.96\nAverage selling price for product 2 = ((200 * 15) + (30 * 30)) / 230 = 16.96\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 860, "dislikes": 89, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "{\"headers\":{\"Prices\":[\"product_id\",\"start_date\",\"end_date\",\"price\"],\"UnitsSold\":[\"product_id\",\"purchase_date\",\"units\"]},\"rows\":{\"Prices\":[[1,\"2019-02-17\",\"2019-02-28\",5],[1,\"2019-03-01\",\"2019-03-22\",20],[2,\"2019-02-01\",\"2019-02-20\",15],[2,\"2019-02-21\",\"2019-03-31\",30]],\"UnitsSold\":[[1,\"2019-02-25\",100],[1,\"2019-03-01\",15],[2,\"2019-02-10\",200],[2,\"2019-03-22\",30]]}}", "categoryTitle": "Database", "contributors": [], "topicTags": [ { "name": "Database", "slug": "database", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "MySQL", "langSlug": "mysql", "code": "# Write your MySQL query statement below\n", "__typename": "CodeSnippetNode" }, { "lang": "MS SQL Server", "langSlug": "mssql", "code": "/* Write your T-SQL query statement below */\n", "__typename": "CodeSnippetNode" }, { "lang": "Oracle", "langSlug": "oraclesql", "code": "/* Write your PL/SQL query statement below */\n", "__typename": "CodeSnippetNode" }, { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef average_selling_price(prices: pd.DataFrame, units_sold: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" }, { "lang": "PostgreSQL", "langSlug": "postgresql", "code": "-- Write your PostgreSQL query statement below\n", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"133.3K\", \"totalSubmission\": \"262K\", \"totalAcceptedRaw\": 133309, \"totalSubmissionRaw\": 261962, \"acRate\": \"50.9%\"}", "hints": [], "solution": { "id": "2138", "canSeeDetail": true, "paidOnly": false, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "{\"headers\":{\"Prices\":[\"product_id\",\"start_date\",\"end_date\",\"price\"],\"UnitsSold\":[\"product_id\",\"purchase_date\",\"units\"]},\"rows\":{\"Prices\":[[1,\"2019-02-17\",\"2019-02-28\",5],[1,\"2019-03-01\",\"2019-03-22\",20],[2,\"2019-02-01\",\"2019-02-20\",15],[2,\"2019-02-21\",\"2019-03-31\",30]],\"UnitsSold\":[[1,\"2019-02-25\",100],[1,\"2019-03-01\",15],[2,\"2019-02-10\",200],[2,\"2019-03-22\",30]]}}", "metaData": "{\"mysql\": [\"Create table If Not Exists Prices (product_id int, start_date date, end_date date, price int)\", \"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)\"], \"mssql\": [\"Create table Prices (product_id int, start_date date, end_date date, price int)\", \"Create table UnitsSold (product_id int, purchase_date date, units int)\"], \"oraclesql\": [\"Create table Prices (product_id int, start_date date, end_date date, price int)\", \"Create table UnitsSold (product_id int, purchase_date date, units int)\", \"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"], \"database\": true, \"name\": \"average_selling_price\", \"pythondata\": [\"Prices = pd.DataFrame([], columns=['product_id', 'start_date', 'end_date', 'price']).astype({'product_id':'Int64', 'start_date':'datetime64[ns]', 'end_date':'datetime64[ns]', 'price':'Int64'})\", \"UnitsSold = pd.DataFrame([], columns=['product_id', 'purchase_date', 'units']).astype({'product_id':'Int64', 'purchase_date':'datetime64[ns]', 'units':'Int64'})\"], \"postgresql\": [\"\\nCreate table If Not Exists Prices (product_id int, start_date date, end_date date, price int)\\n\", \"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)\"], \"database_schema\": {\"Prices\": {\"product_id\": \"INT\", \"start_date\": \"DATE\", \"end_date\": \"DATE\", \"price\": \"INT\"}, \"UnitsSold\": {\"product_id\": \"INT\", \"purchase_date\": \"DATE\", \"units\": \"INT\"}}}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [ "Create table If Not Exists Prices (product_id int, start_date date, end_date date, price int)", "Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)", "Truncate table Prices", "insert into Prices (product_id, start_date, end_date, price) values ('1', '2019-02-17', '2019-02-28', '5')", "insert into Prices (product_id, start_date, end_date, price) values ('1', '2019-03-01', '2019-03-22', '20')", "insert into Prices (product_id, start_date, end_date, price) values ('2', '2019-02-01', '2019-02-20', '15')", "insert into Prices (product_id, start_date, end_date, price) values ('2', '2019-02-21', '2019-03-31', '30')", "Truncate table UnitsSold", "insert into UnitsSold (product_id, purchase_date, units) values ('1', '2019-02-25', '100')", "insert into UnitsSold (product_id, purchase_date, units) values ('1', '2019-03-01', '15')", "insert into UnitsSold (product_id, purchase_date, units) values ('2', '2019-02-10', '200')", "insert into UnitsSold (product_id, purchase_date, units) values ('2', '2019-03-22', '30')" ], "enableRunCode": true, "enableTestMode": false, "enableDebugger": false, "envInfo": "{\"mysql\": [\"MySQL\", \"
MySQL 8.0
.
mssql server 2019
.
Oracle Sql 11.2
.
Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0
\"], \"postgresql\": [\"PostgreSQL\", \"PostgreSQL 16
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }