{ "data": { "question": { "questionId": "2498", "questionFrontendId": "2411", "boundTopicId": null, "title": "Smallest Subarrays With Maximum Bitwise OR", "titleSlug": "smallest-subarrays-with-maximum-bitwise-or", "content": "
You are given a 0-indexed array nums
of length n
, consisting of non-negative integers. For each index i
from 0
to n - 1
, you must determine the size of the minimum sized non-empty subarray of nums
starting at i
(inclusive) that has the maximum possible bitwise OR.
Bij
be the bitwise OR of the subarray nums[i...j]
. You need to find the smallest subarray starting at i
, such that bitwise OR of this subarray is equal to max(Bik)
where i <= k <= n - 1
.The bitwise OR of an array is the bitwise OR of all the numbers in it.
\n\nReturn an integer array answer
of size n
where answer[i]
is the length of the minimum sized subarray starting at i
with maximum bitwise OR.
A subarray is a contiguous non-empty sequence of elements within an array.
\n\n\n
Example 1:
\n\n\nInput: nums = [1,0,2,1,3]\nOutput: [3,3,2,2,1]\nExplanation:\nThe maximum possible bitwise OR starting at any index is 3. \n- Starting at index 0, the shortest subarray that yields it is [1,0,2].\n- Starting at index 1, the shortest subarray that yields the maximum bitwise OR is [0,2,1].\n- Starting at index 2, the shortest subarray that yields the maximum bitwise OR is [2,1].\n- Starting at index 3, the shortest subarray that yields the maximum bitwise OR is [1,3].\n- Starting at index 4, the shortest subarray that yields the maximum bitwise OR is [3].\nTherefore, we return [3,3,2,2,1]. \n\n\n
Example 2:
\n\n\nInput: nums = [1,2]\nOutput: [2,1]\nExplanation:\nStarting at index 0, the shortest subarray that yields the maximum bitwise OR is of length 2.\nStarting at index 1, the shortest subarray that yields the maximum bitwise OR is of length 1.\nTherefore, we return [2,1].\n\n\n
\n
Constraints:
\n\nn == nums.length
1 <= n <= 105
0 <= nums[i] <= 109
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }