{ "data": { "question": { "questionId": "3362", "questionFrontendId": "3134", "boundTopicId": null, "title": "Find the Median of the Uniqueness Array", "titleSlug": "find-the-median-of-the-uniqueness-array", "content": "

You are given an integer array nums. The uniqueness array of nums is the sorted array that contains the number of distinct elements of all the subarrays of nums. In other words, it is a sorted array consisting of distinct(nums[i..j]), for all 0 <= i <= j < nums.length.

\n\n

Here, distinct(nums[i..j]) denotes the number of distinct elements in the subarray that starts at index i and ends at index j.

\n\n

Return the median of the uniqueness array of nums.

\n\n

Note that the median of an array is defined as the middle element of the array when it is sorted in non-decreasing order. If there are two choices for a median, the smaller of the two values is taken.

\n\n

 

\n

Example 1:

\n\n
\n

Input: nums = [1,2,3]

\n\n

Output: 1

\n\n

Explanation:

\n\n

The uniqueness array of nums is [distinct(nums[0..0]), distinct(nums[1..1]), distinct(nums[2..2]), distinct(nums[0..1]), distinct(nums[1..2]), distinct(nums[0..2])] which is equal to [1, 1, 1, 2, 2, 3]. The uniqueness array has a median of 1. Therefore, the answer is 1.

\n
\n\n

Example 2:

\n\n
\n

Input: nums = [3,4,3,4,5]

\n\n

Output: 2

\n\n

Explanation:

\n\n

The uniqueness array of nums is [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3]. The uniqueness array has a median of 2. Therefore, the answer is 2.

\n
\n\n

Example 3:

\n\n
\n

Input: nums = [4,3,5,4]

\n\n

Output: 2

\n\n

Explanation:

\n\n

The uniqueness array of nums is [1, 1, 1, 1, 2, 2, 2, 3, 3, 3]. The uniqueness array has a median of 2. Therefore, the answer is 2.

\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 116, "dislikes": 9, "isLiked": null, "similarQuestions": "[{\"title\": \"Find K-th Smallest Pair Distance\", \"titleSlug\": \"find-k-th-smallest-pair-distance\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Total Appeal of A String\", \"titleSlug\": \"total-appeal-of-a-string\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "[1,2,3]\n[3,4,3,4,5]\n[4,3,5,4]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Hash Table", "slug": "hash-table", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Search", "slug": "binary-search", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sliding Window", "slug": "sliding-window", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int medianOfUniquenessArray(vector& nums) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int medianOfUniquenessArray(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def medianOfUniquenessArray(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def medianOfUniquenessArray(self, nums: List[int]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int medianOfUniquenessArray(int* nums, int numsSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MedianOfUniquenessArray(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @return {number}\n */\nvar medianOfUniquenessArray = function(nums) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function medianOfUniquenessArray(nums: number[]): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @return Integer\n */\n function medianOfUniquenessArray($nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func medianOfUniquenessArray(_ nums: [Int]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun medianOfUniquenessArray(nums: IntArray): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int medianOfUniquenessArray(List nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func medianOfUniquenessArray(nums []int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @return {Integer}\ndef median_of_uniqueness_array(nums)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def medianOfUniquenessArray(nums: Array[Int]): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn median_of_uniqueness_array(nums: Vec) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (median-of-uniqueness-array nums)\n (-> (listof exact-integer?) exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec median_of_uniqueness_array(Nums :: [integer()]) -> integer().\nmedian_of_uniqueness_array(Nums) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec median_of_uniqueness_array(nums :: [integer]) :: integer\n def median_of_uniqueness_array(nums) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"4.7K\", \"totalSubmission\": \"16.4K\", \"totalAcceptedRaw\": 4679, \"totalSubmissionRaw\": 16406, \"acRate\": \"28.5%\"}", "hints": [ "Binary search over the answer.", "For a given x, you need to check if x is the median, to the left of the median, or to the right of the median. You can do that by counting the number of sub-arrays nums[i…j] such that distinct(num[i…j]) <= x.", "Use the sliding window to solve the counting problem in the hint above." ], "solution": null, "status": null, "sampleTestCase": "[1,2,3]", "metaData": "{\n \"name\": \"medianOfUniquenessArray\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 17 using the latest C++ 20 standard, and libstdc++ provided by GCC 11.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 21. Using compile arguments: --enable-preview --release 21

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 11 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 12 with .NET 8 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 20.10.0.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.4.0 version of datastructures-js/priority-queue and 4.2.3 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.2

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.9.

\\r\\n\\r\\n

You may use swift-algorithms 1.2.0 and swift-collections 1.1.0.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1 and https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha library.

\"], \"python3\": [\"Python3\", \"

Python 3.11.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 3.3.1.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\\r\\n\\r\\n

We are using an experimental compiler provided by JetBrains.

\"], \"rust\": [\"Rust\", \"

Rust 1.74.1. Your code will be compiled with opt-level 2.

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.2.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 20.10.0.

\\r\\n\\r\\n

Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Racket CS v8.11

\\r\\n\\r\\n

Using #lang racket

\\r\\n\\r\\n

Required data/gvector data/queue data/order data/heap automatically for your convenience

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 26\"], \"elixir\": [\"Elixir\", \"Elixir 1.15 with Erlang/OTP 26\"], \"dart\": [\"Dart\", \"

Dart 3.2. You may use package collection

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }