There is an m x n binary grid matrix with all the values set 0 initially. Design an algorithm to randomly pick an index (i, j) where matrix[i][j] == 0 and flips it to 1. All the indices (i, j) where matrix[i][j] == 0 should be equally likely to be returned.

Optimize your algorithm to minimize the number of calls made to the built-in random function of your language and optimize the time and space complexity.

Implement the Solution class:

 

Example 1:

Input
["Solution", "flip", "flip", "flip", "reset", "flip"]
[[3, 1], [], [], [], [], []]
Output
[null, [1, 0], [2, 0], [0, 0], null, [2, 0]]

Explanation
Solution solution = new Solution(3, 1);
solution.flip();  // return [1, 0], [0,0], [1,0], and [2,0] should be equally likely to be returned.
solution.flip();  // return [2, 0], Since [1,0] was returned, [2,0] and [0,0]
solution.flip();  // return [0, 0], Based on the previously returned indices, only [0,0] can be returned.
solution.reset(); // All the values are reset to 0 and can be returned.
solution.flip();  // return [2, 0], [0,0], [1,0], and [2,0] should be equally likely to be returned.

 

Constraints: