{ "data": { "question": { "questionId": "3000", "questionFrontendId": "2817", "boundTopicId": null, "title": "Minimum Absolute Difference Between Elements With Constraint", "titleSlug": "minimum-absolute-difference-between-elements-with-constraint", "content": "

You are given a 0-indexed integer array nums and an integer x.

\n\n

Find the minimum absolute difference between two elements in the array that are at least x indices apart.

\n\n

In other words, find two indices i and j such that abs(i - j) >= x and abs(nums[i] - nums[j]) is minimized.

\n\n

Return an integer denoting the minimum absolute difference between two elements that are at least x indices apart.

\n\n

 

\n

Example 1:

\n\n
\nInput: nums = [4,3,2,4], x = 2\nOutput: 0\nExplanation: We can select nums[0] = 4 and nums[3] = 4. \nThey are at least 2 indices apart, and their absolute difference is the minimum, 0. \nIt can be shown that 0 is the optimal answer.\n
\n\n

Example 2:

\n\n
\nInput: nums = [5,3,2,10,15], x = 1\nOutput: 1\nExplanation: We can select nums[1] = 3 and nums[2] = 2.\nThey are at least 1 index apart, and their absolute difference is the minimum, 1.\nIt can be shown that 1 is the optimal answer.\n
\n\n

Example 3:

\n\n
\nInput: nums = [1,2,3,4], x = 3\nOutput: 3\nExplanation: We can select nums[0] = 1 and nums[3] = 4.\nThey are at least 3 indices apart, and their absolute difference is the minimum, 3.\nIt can be shown that 3 is the optimal answer.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 619, "dislikes": 64, "isLiked": null, "similarQuestions": "[{\"title\": \"K-diff Pairs in an Array\", \"titleSlug\": \"k-diff-pairs-in-an-array\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Find All K-Distant Indices in an Array\", \"titleSlug\": \"find-all-k-distant-indices-in-an-array\", \"difficulty\": \"Easy\", \"translatedTitle\": null}, {\"title\": \"Find Indices With Index and Value Difference I\", \"titleSlug\": \"find-indices-with-index-and-value-difference-i\", \"difficulty\": \"Easy\", \"translatedTitle\": null}, {\"title\": \"Find Indices With Index and Value Difference II\", \"titleSlug\": \"find-indices-with-index-and-value-difference-ii\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "[4,3,2,4]\n2\n[5,3,2,10,15]\n1\n[1,2,3,4]\n3", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Search", "slug": "binary-search", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Ordered Set", "slug": "ordered-set", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int minAbsoluteDifference(vector& nums, int x) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int minAbsoluteDifference(List nums, int x) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minAbsoluteDifference(self, nums, x):\n \"\"\"\n :type nums: List[int]\n :type x: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minAbsoluteDifference(self, nums: List[int], x: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int minAbsoluteDifference(int* nums, int numsSize, int x){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MinAbsoluteDifference(IList nums, int x) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @param {number} x\n * @return {number}\n */\nvar minAbsoluteDifference = function(nums, x) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minAbsoluteDifference(nums: number[], x: number): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @param Integer $x\n * @return Integer\n */\n function minAbsoluteDifference($nums, $x) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minAbsoluteDifference(_ nums: [Int], _ x: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minAbsoluteDifference(nums: List, x: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int minAbsoluteDifference(List nums, int x) {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minAbsoluteDifference(nums []int, x int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @param {Integer} x\n# @return {Integer}\ndef min_absolute_difference(nums, x)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minAbsoluteDifference(nums: List[Int], x: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn min_absolute_difference(nums: Vec, x: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (min-absolute-difference nums x)\n (-> (listof exact-integer?) exact-integer? exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec min_absolute_difference(Nums :: [integer()], X :: integer()) -> integer().\nmin_absolute_difference(Nums, X) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec min_absolute_difference(nums :: [integer], x :: integer) :: integer\n def min_absolute_difference(nums, x) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"20.9K\", \"totalSubmission\": \"65.1K\", \"totalAcceptedRaw\": 20880, \"totalSubmissionRaw\": 65055, \"acRate\": \"32.1%\"}", "hints": [ "
Let's only consider the cases where i < j, as the problem is symmetric.
", "
For an index j, we are interested in an index i in the range [0, j - x] that minimizes abs(nums[i] - nums[j]).
", "
For every index j, while going from left to right, add nums[j - x] to a set (C++ set, Java TreeSet, and Python sorted set).
", "
After inserting nums[j - x], we can calculate the closest value to nums[j] in the set using binary search and store the absolute difference. In C++, we can achieve this by using lower_bound and/or upper_bound.
", "
Calculate the minimum absolute difference among all indices.
" ], "solution": null, "status": null, "sampleTestCase": "[4,3,2,4]\n2", "metaData": "{\n \"name\": \"minAbsoluteDifference\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"list\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"x\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }