{ "data": { "question": { "questionId": "1744", "questionFrontendId": "1639", "boundTopicId": null, "title": "Number of Ways to Form a Target String Given a Dictionary", "titleSlug": "number-of-ways-to-form-a-target-string-given-a-dictionary", "content": "
You are given a list of strings of the same length words
and a string target
.
Your task is to form target
using the given words
under the following rules:
target
should be formed from left to right.ith
character (0-indexed) of target
, you can choose the kth
character of the jth
string in words
if target[i] = words[j][k]
.kth
character of the jth
string of words
, you can no longer use the xth
character of any string in words
where x <= k
. In other words, all characters to the left of or at index k
become unusuable for every string.target
.Notice that you can use multiple characters from the same string in words
provided the conditions above are met.
Return the number of ways to form target
from words
. Since the answer may be too large, return it modulo 109 + 7
.
\n
Example 1:
\n\n\nInput: words = ["acca","bbbb","caca"], target = "aba"\nOutput: 6\nExplanation: There are 6 ways to form target.\n"aba" -> index 0 ("acca"), index 1 ("bbbb"), index 3 ("caca")\n"aba" -> index 0 ("acca"), index 2 ("bbbb"), index 3 ("caca")\n"aba" -> index 0 ("acca"), index 1 ("bbbb"), index 3 ("acca")\n"aba" -> index 0 ("acca"), index 2 ("bbbb"), index 3 ("acca")\n"aba" -> index 1 ("caca"), index 2 ("bbbb"), index 3 ("acca")\n"aba" -> index 1 ("caca"), index 2 ("bbbb"), index 3 ("caca")\n\n\n
Example 2:
\n\n\nInput: words = ["abba","baab"], target = "bab"\nOutput: 4\nExplanation: There are 4 ways to form target.\n"bab" -> index 0 ("baab"), index 1 ("baab"), index 2 ("abba")\n"bab" -> index 0 ("baab"), index 1 ("baab"), index 3 ("baab")\n"bab" -> index 0 ("baab"), index 2 ("baab"), index 3 ("baab")\n"bab" -> index 1 ("abba"), index 2 ("baab"), index 3 ("baab")\n\n\n
\n
Constraints:
\n\n1 <= words.length <= 1000
1 <= words[i].length <= 1000
words
have the same length.1 <= target.length <= 1000
words[i]
and target
contain only lowercase English letters.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.