{ "data": { "question": { "questionId": "1957", "questionFrontendId": "1847", "boundTopicId": null, "title": "Closest Room", "titleSlug": "closest-room", "content": "
There is a hotel with n
rooms. The rooms are represented by a 2D integer array rooms
where rooms[i] = [roomIdi, sizei]
denotes that there is a room with room number roomIdi
and size equal to sizei
. Each roomIdi
is guaranteed to be unique.
You are also given k
queries in a 2D array queries
where queries[j] = [preferredj, minSizej]
. The answer to the jth
query is the room number id
of a room such that:
minSizej
, andabs(id - preferredj)
is minimized, where abs(x)
is the absolute value of x
.If there is a tie in the absolute difference, then use the room with the smallest such id
. If there is no such room, the answer is -1
.
Return an array answer
of length k
where answer[j]
contains the answer to the jth
query.
\n
Example 1:
\n\n\nInput: rooms = [[2,2],[1,2],[3,2]], queries = [[3,1],[3,3],[5,2]]\nOutput: [3,-1,3]\nExplanation: The answers to the queries are as follows:\nQuery = [3,1]: Room number 3 is the closest as abs(3 - 3) = 0, and its size of 2 is at least 1. The answer is 3.\nQuery = [3,3]: There are no rooms with a size of at least 3, so the answer is -1.\nQuery = [5,2]: Room number 3 is the closest as abs(3 - 5) = 2, and its size of 2 is at least 2. The answer is 3.\n\n
Example 2:
\n\n\nInput: rooms = [[1,4],[2,3],[3,5],[4,1],[5,2]], queries = [[2,3],[2,4],[2,5]]\nOutput: [2,1,3]\nExplanation: The answers to the queries are as follows:\nQuery = [2,3]: Room number 2 is the closest as abs(2 - 2) = 0, and its size of 3 is at least 3. The answer is 2.\nQuery = [2,4]: Room numbers 1 and 3 both have sizes of at least 4. The answer is 1 since it is smaller.\nQuery = [2,5]: Room number 3 is the only room with a size of at least 5. The answer is 3.\n\n
\n
Constraints:
\n\nn == rooms.length
1 <= n <= 105
k == queries.length
1 <= k <= 104
1 <= roomIdi, preferredj <= 107
1 <= sizei, minSizej <= 107
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.