{ "data": { "question": { "questionId": "1953", "questionFrontendId": "1825", "boundTopicId": null, "title": "Finding MK Average", "titleSlug": "finding-mk-average", "content": "

You are given two integers, m and k, and a stream of integers. You are tasked to implement a data structure that calculates the MKAverage for the stream.

\n\n

The MKAverage can be calculated using these steps:

\n\n
    \n\t
  1. If the number of the elements in the stream is less than m you should consider the MKAverage to be -1. Otherwise, copy the last m elements of the stream to a separate container.
  2. \n\t
  3. Remove the smallest k elements and the largest k elements from the container.
  4. \n\t
  5. Calculate the average value for the rest of the elements rounded down to the nearest integer.
  6. \n
\n\n

Implement the MKAverage class:

\n\n\n\n

 

\n

Example 1:

\n\n
\nInput\n["MKAverage", "addElement", "addElement", "calculateMKAverage", "addElement", "calculateMKAverage", "addElement", "addElement", "addElement", "calculateMKAverage"]\n[[3, 1], [3], [1], [], [10], [], [5], [5], [5], []]\nOutput\n[null, null, null, -1, null, 3, null, null, null, 5]\n\nExplanation\nMKAverage obj = new MKAverage(3, 1); \nobj.addElement(3);        // current elements are [3]\nobj.addElement(1);        // current elements are [3,1]\nobj.calculateMKAverage(); // return -1, because m = 3 and only 2 elements exist.\nobj.addElement(10);       // current elements are [3,1,10]\nobj.calculateMKAverage(); // The last 3 elements are [3,1,10].\n                          // After removing smallest and largest 1 element the container will be [3].\n                          // The average of [3] equals 3/1 = 3, return 3\nobj.addElement(5);        // current elements are [3,1,10,5]\nobj.addElement(5);        // current elements are [3,1,10,5,5]\nobj.addElement(5);        // current elements are [3,1,10,5,5,5]\nobj.calculateMKAverage(); // The last 3 elements are [5,5,5].\n                          // After removing smallest and largest 1 element the container will be [5].\n                          // The average of [5] equals 5/1 = 5, return 5\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 194, "dislikes": 81, "isLiked": null, "similarQuestions": "[{\"title\": \"Find Median from Data Stream\", \"titleSlug\": \"find-median-from-data-stream\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Kth Largest Element in a Stream\", \"titleSlug\": \"kth-largest-element-in-a-stream\", \"difficulty\": \"Easy\", \"translatedTitle\": null}, {\"title\": \"Sequentially Ordinal Rank Tracker\", \"titleSlug\": \"sequentially-ordinal-rank-tracker\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "[\"MKAverage\",\"addElement\",\"addElement\",\"calculateMKAverage\",\"addElement\",\"calculateMKAverage\",\"addElement\",\"addElement\",\"addElement\",\"calculateMKAverage\"]\n[[3,1],[3],[1],[],[10],[],[5],[5],[5],[]]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Design", "slug": "design", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Queue", "slug": "queue", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Heap (Priority Queue)", "slug": "heap-priority-queue", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Ordered Set", "slug": "ordered-set", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class MKAverage {\npublic:\n MKAverage(int m, int k) {\n \n }\n \n void addElement(int num) {\n \n }\n \n int calculateMKAverage() {\n \n }\n};\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * MKAverage* obj = new MKAverage(m, k);\n * obj->addElement(num);\n * int param_2 = obj->calculateMKAverage();\n */", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class MKAverage {\n\n public MKAverage(int m, int k) {\n \n }\n \n public void addElement(int num) {\n \n }\n \n public int calculateMKAverage() {\n \n }\n}\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * MKAverage obj = new MKAverage(m, k);\n * obj.addElement(num);\n * int param_2 = obj.calculateMKAverage();\n */", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class MKAverage(object):\n\n def __init__(self, m, k):\n \"\"\"\n :type m: int\n :type k: int\n \"\"\"\n \n\n def addElement(self, num):\n \"\"\"\n :type num: int\n :rtype: None\n \"\"\"\n \n\n def calculateMKAverage(self):\n \"\"\"\n :rtype: int\n \"\"\"\n \n\n\n# Your MKAverage object will be instantiated and called as such:\n# obj = MKAverage(m, k)\n# obj.addElement(num)\n# param_2 = obj.calculateMKAverage()", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class MKAverage:\n\n def __init__(self, m: int, k: int):\n \n\n def addElement(self, num: int) -> None:\n \n\n def calculateMKAverage(self) -> int:\n \n\n\n# Your MKAverage object will be instantiated and called as such:\n# obj = MKAverage(m, k)\n# obj.addElement(num)\n# param_2 = obj.calculateMKAverage()", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\n\ntypedef struct {\n \n} MKAverage;\n\n\nMKAverage* mKAverageCreate(int m, int k) {\n \n}\n\nvoid mKAverageAddElement(MKAverage* obj, int num) {\n \n}\n\nint mKAverageCalculateMKAverage(MKAverage* obj) {\n \n}\n\nvoid mKAverageFree(MKAverage* obj) {\n \n}\n\n/**\n * Your MKAverage struct will be instantiated and called as such:\n * MKAverage* obj = mKAverageCreate(m, k);\n * mKAverageAddElement(obj, num);\n \n * int param_2 = mKAverageCalculateMKAverage(obj);\n \n * mKAverageFree(obj);\n*/", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class MKAverage {\n\n public MKAverage(int m, int k) {\n \n }\n \n public void AddElement(int num) {\n \n }\n \n public int CalculateMKAverage() {\n \n }\n}\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * MKAverage obj = new MKAverage(m, k);\n * obj.AddElement(num);\n * int param_2 = obj.CalculateMKAverage();\n */", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number} m\n * @param {number} k\n */\nvar MKAverage = function(m, k) {\n \n};\n\n/** \n * @param {number} num\n * @return {void}\n */\nMKAverage.prototype.addElement = function(num) {\n \n};\n\n/**\n * @return {number}\n */\nMKAverage.prototype.calculateMKAverage = function() {\n \n};\n\n/** \n * Your MKAverage object will be instantiated and called as such:\n * var obj = new MKAverage(m, k)\n * obj.addElement(num)\n * var param_2 = obj.calculateMKAverage()\n */", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "class MKAverage\n\n=begin\n :type m: Integer\n :type k: Integer\n=end\n def initialize(m, k)\n \n end\n\n\n=begin\n :type num: Integer\n :rtype: Void\n=end\n def add_element(num)\n \n end\n\n\n=begin\n :rtype: Integer\n=end\n def calculate_mk_average()\n \n end\n\n\nend\n\n# Your MKAverage object will be instantiated and called as such:\n# obj = MKAverage.new(m, k)\n# obj.add_element(num)\n# param_2 = obj.calculate_mk_average()", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "\nclass MKAverage {\n\n init(_ m: Int, _ k: Int) {\n \n }\n \n func addElement(_ num: Int) {\n \n }\n \n func calculateMKAverage() -> Int {\n \n }\n}\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * let obj = MKAverage(m, k)\n * obj.addElement(num)\n * let ret_2: Int = obj.calculateMKAverage()\n */", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "type MKAverage struct {\n \n}\n\n\nfunc Constructor(m int, k int) MKAverage {\n \n}\n\n\nfunc (this *MKAverage) AddElement(num int) {\n \n}\n\n\nfunc (this *MKAverage) CalculateMKAverage() int {\n \n}\n\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * obj := Constructor(m, k);\n * obj.AddElement(num);\n * param_2 := obj.CalculateMKAverage();\n */", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "class MKAverage(_m: Int, _k: Int) {\n\n def addElement(num: Int) {\n \n }\n\n def calculateMKAverage(): Int = {\n \n }\n\n}\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * var obj = new MKAverage(m, k)\n * obj.addElement(num)\n * var param_2 = obj.calculateMKAverage()\n */", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class MKAverage(m: Int, k: Int) {\n\n fun addElement(num: Int) {\n \n }\n\n fun calculateMKAverage(): Int {\n \n }\n\n}\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * var obj = MKAverage(m, k)\n * obj.addElement(num)\n * var param_2 = obj.calculateMKAverage()\n */", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "struct MKAverage {\n\n}\n\n\n/** \n * `&self` means the method takes an immutable reference.\n * If you need a mutable reference, change it to `&mut self` instead.\n */\nimpl MKAverage {\n\n fn new(m: i32, k: i32) -> Self {\n \n }\n \n fn add_element(&self, num: i32) {\n \n }\n \n fn calculate_mk_average(&self) -> i32 {\n \n }\n}\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * let obj = MKAverage::new(m, k);\n * obj.add_element(num);\n * let ret_2: i32 = obj.calculate_mk_average();\n */", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class MKAverage {\n /**\n * @param Integer $m\n * @param Integer $k\n */\n function __construct($m, $k) {\n \n }\n \n /**\n * @param Integer $num\n * @return NULL\n */\n function addElement($num) {\n \n }\n \n /**\n * @return Integer\n */\n function calculateMKAverage() {\n \n }\n}\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * $obj = MKAverage($m, $k);\n * $obj->addElement($num);\n * $ret_2 = $obj->calculateMKAverage();\n */", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "class MKAverage {\n constructor(m: number, k: number) {\n\n }\n\n addElement(num: number): void {\n\n }\n\n calculateMKAverage(): number {\n\n }\n}\n\n/**\n * Your MKAverage object will be instantiated and called as such:\n * var obj = new MKAverage(m, k)\n * obj.addElement(num)\n * var param_2 = obj.calculateMKAverage()\n */", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define mk-average%\n (class object%\n (super-new)\n\n ; m : exact-integer?\n\n ; k : exact-integer?\n (init-field\n m\n k)\n \n ; add-element : exact-integer? -> void?\n (define/public (add-element num)\n\n )\n ; calculate-mk-average : -> exact-integer?\n (define/public (calculate-mk-average)\n\n )))\n\n;; Your mk-average% object will be instantiated and called as such:\n;; (define obj (new mk-average% [m m] [k k]))\n;; (send obj add-element num)\n;; (define param_2 (send obj calculate-mk-average))", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec mk_average_init_(M :: integer(), K :: integer()) -> any().\nmk_average_init_(M, K) ->\n .\n\n-spec mk_average_add_element(Num :: integer()) -> any().\nmk_average_add_element(Num) ->\n .\n\n-spec mk_average_calculate_mk_average() -> integer().\nmk_average_calculate_mk_average() ->\n .\n\n\n%% Your functions will be called as such:\n%% mk_average_init_(M, K),\n%% mk_average_add_element(Num),\n%% Param_2 = mk_average_calculate_mk_average(),\n\n%% mk_average_init_ will be called before every test case, in which you can do some necessary initializations.", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule MKAverage do\n @spec init_(m :: integer, k :: integer) :: any\n def init_(m, k) do\n\n end\n\n @spec add_element(num :: integer) :: any\n def add_element(num) do\n\n end\n\n @spec calculate_mk_average() :: integer\n def calculate_mk_average() do\n\n end\nend\n\n# Your functions will be called as such:\n# MKAverage.init_(m, k)\n# MKAverage.add_element(num)\n# param_2 = MKAverage.calculate_mk_average()\n\n# MKAverage.init_ will be called before every test case, in which you can do some necessary initializations.", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"6.6K\", \"totalSubmission\": \"20K\", \"totalAcceptedRaw\": 6586, \"totalSubmissionRaw\": 20014, \"acRate\": \"32.9%\"}", "hints": [ "At each query, try to save and update the sum of the elements needed to calculate MKAverage.", "You can use BSTs for fast insertion and deletion of the elements." ], "solution": null, "status": null, "sampleTestCase": "[\"MKAverage\",\"addElement\",\"addElement\",\"calculateMKAverage\",\"addElement\",\"calculateMKAverage\",\"addElement\",\"addElement\",\"addElement\",\"calculateMKAverage\"]\n[[3,1],[3],[1],[],[10],[],[5],[5],[5],[]]", "metaData": "{\n \"classname\": \"MKAverage\",\n \"constructor\": {\n \"params\": [\n {\n \"name\": \"m\",\n \"type\": \"integer\"\n },\n {\n \"name\": \"k\",\n \"type\": \"integer\"\n }\n ]\n },\n \"methods\": [\n {\n \"params\": [\n {\n \"type\": \"integer\",\n \"name\": \"num\"\n }\n ],\n \"name\": \"addElement\",\n \"return\": {\n \"type\": \"void\"\n }\n },\n {\n \"params\": [],\n \"name\": \"calculateMKAverage\",\n \"return\": {\n \"type\": \"integer\"\n }\n }\n ],\n \"return\": {\n \"type\": \"boolean\"\n },\n \"systemdesign\": true\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }