{ "data": { "question": { "questionId": "2006", "questionFrontendId": "1894", "boundTopicId": null, "title": "Find the Student that Will Replace the Chalk", "titleSlug": "find-the-student-that-will-replace-the-chalk", "content": "
There are n
students in a class numbered from 0
to n - 1
. The teacher will give each student a problem starting with the student number 0
, then the student number 1
, and so on until the teacher reaches the student number n - 1
. After that, the teacher will restart the process, starting with the student number 0
again.
You are given a 0-indexed integer array chalk
and an integer k
. There are initially k
pieces of chalk. When the student number i
is given a problem to solve, they will use chalk[i]
pieces of chalk to solve that problem. However, if the current number of chalk pieces is strictly less than chalk[i]
, then the student number i
will be asked to replace the chalk.
Return the index of the student that will replace the chalk.
\n\n\n
Example 1:
\n\n\nInput: chalk = [5,1,5], k = 22\nOutput: 0\nExplanation: The students go in turns as follows:\n- Student number 0 uses 5 chalk, so k = 17.\n- Student number 1 uses 1 chalk, so k = 16.\n- Student number 2 uses 5 chalk, so k = 11.\n- Student number 0 uses 5 chalk, so k = 6.\n- Student number 1 uses 1 chalk, so k = 5.\n- Student number 2 uses 5 chalk, so k = 0.\nStudent number 0 does not have enough chalk, so they will have to replace it.\n\n
Example 2:
\n\n\nInput: chalk = [3,4,1,2], k = 25\nOutput: 1\nExplanation: The students go in turns as follows:\n- Student number 0 uses 3 chalk so k = 22.\n- Student number 1 uses 4 chalk so k = 18.\n- Student number 2 uses 1 chalk so k = 17.\n- Student number 3 uses 2 chalk so k = 15.\n- Student number 0 uses 3 chalk so k = 12.\n- Student number 1 uses 4 chalk so k = 8.\n- Student number 2 uses 1 chalk so k = 7.\n- Student number 3 uses 2 chalk so k = 5.\n- Student number 0 uses 3 chalk so k = 2.\nStudent number 1 does not have enough chalk, so they will have to replace it.\n\n\n
\n
Constraints:
\n\nchalk.length == n
1 <= n <= 105
1 <= chalk[i] <= 105
1 <= k <= 109
Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.