{ "data": { "question": { "questionId": "2260", "questionFrontendId": "2138", "boundTopicId": null, "title": "Divide a String Into Groups of Size k", "titleSlug": "divide-a-string-into-groups-of-size-k", "content": "
A string s
can be partitioned into groups of size k
using the following procedure:
k
characters of the string, the second group consists of the next k
characters of the string, and so on. Each character can be a part of exactly one group.k
characters remaining, a character fill
is used to complete the group.Note that the partition is done so that after removing the fill
character from the last group (if it exists) and concatenating all the groups in order, the resultant string should be s
.
Given the string s
, the size of each group k
and the character fill
, return a string array denoting the composition of every group s
has been divided into, using the above procedure.
\n
Example 1:
\n\n\nInput: s = "abcdefghi", k = 3, fill = "x"\nOutput: ["abc","def","ghi"]\nExplanation:\nThe first 3 characters "abc" form the first group.\nThe next 3 characters "def" form the second group.\nThe last 3 characters "ghi" form the third group.\nSince all groups can be completely filled by characters from the string, we do not need to use fill.\nThus, the groups formed are "abc", "def", and "ghi".\n\n\n
Example 2:
\n\n\nInput: s = "abcdefghij", k = 3, fill = "x"\nOutput: ["abc","def","ghi","jxx"]\nExplanation:\nSimilar to the previous example, we are forming the first three groups "abc", "def", and "ghi".\nFor the last group, we can only use the character 'j' from the string. To complete this group, we add 'x' twice.\nThus, the 4 groups formed are "abc", "def", "ghi", and "jxx".\n\n\n
\n
Constraints:
\n\n1 <= s.length <= 100
s
consists of lowercase English letters only.1 <= k <= 100
fill
is a lowercase English letter.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.