<p>A concert hall has <code>n</code> rows numbered from <code>0</code> to <code>n - 1</code>, each with <code>m</code> seats, numbered from <code>0</code> to <code>m - 1</code>. You need to design a ticketing system that can allocate seats in the following cases:</p> <ul> <li>If a group of <code>k</code> spectators can sit <strong>together</strong> in a row.</li> <li>If <strong>every</strong> member of a group of <code>k</code> spectators can get a seat. They may or <strong>may not</strong> sit together.</li> </ul> <p>Note that the spectators are very picky. Hence:</p> <ul> <li>They will book seats only if each member of their group can get a seat with row number <strong>less than or equal</strong> to <code>maxRow</code>. <code>maxRow</code> can <strong>vary</strong> from group to group.</li> <li>In case there are multiple rows to choose from, the row with the <strong>smallest</strong> number is chosen. If there are multiple seats to choose in the same row, the seat with the <strong>smallest</strong> number is chosen.</li> </ul> <p>Implement the <code>BookMyShow</code> class:</p> <ul> <li><code>BookMyShow(int n, int m)</code> Initializes the object with <code>n</code> as number of rows and <code>m</code> as number of seats per row.</li> <li><code>int[] gather(int k, int maxRow)</code> Returns an array of length <code>2</code> denoting the row and seat number (respectively) of the <strong>first seat</strong> being allocated to the <code>k</code> members of the group, who must sit <strong>together</strong>. In other words, it returns the smallest possible <code>r</code> and <code>c</code> such that all <code>[c, c + k - 1]</code> seats are valid and empty in row <code>r</code>, and <code>r <= maxRow</code>. Returns <code>[]</code> in case it is <strong>not possible</strong> to allocate seats to the group.</li> <li><code>boolean scatter(int k, int maxRow)</code> Returns <code>true</code> if all <code>k</code> members of the group can be allocated seats in rows <code>0</code> to <code>maxRow</code>, who may or <strong>may not</strong> sit together. If the seats can be allocated, it allocates <code>k</code> seats to the group with the <strong>smallest</strong> row numbers, and the smallest possible seat numbers in each row. Otherwise, returns <code>false</code>.</li> </ul> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input</strong> ["BookMyShow", "gather", "gather", "scatter", "scatter"] [[2, 5], [4, 0], [2, 0], [5, 1], [5, 1]] <strong>Output</strong> [null, [0, 0], [], true, false] <strong>Explanation</strong> BookMyShow bms = new BookMyShow(2, 5); // There are 2 rows with 5 seats each bms.gather(4, 0); // return [0, 0] // The group books seats [0, 3] of row 0. bms.gather(2, 0); // return [] // There is only 1 seat left in row 0, // so it is not possible to book 2 consecutive seats. bms.scatter(5, 1); // return True // The group books seat 4 of row 0 and seats [0, 3] of row 1. bms.scatter(5, 1); // return False // There is only one seat left in the hall. </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>1 <= n <= 5 * 10<sup>4</sup></code></li> <li><code>1 <= m, k <= 10<sup>9</sup></code></li> <li><code>0 <= maxRow <= n - 1</code></li> <li>At most <code>5 * 10<sup>4</sup></code> calls <strong>in total</strong> will be made to <code>gather</code> and <code>scatter</code>.</li> </ul>