You are given two integer arrays, nums1
and nums2
, both of length n
, along with a positive integer k
.
For each index i
from 0
to n - 1
, perform the following:
j
where nums1[j]
is less than nums1[i]
.k
values of nums2[j]
at these indices to maximize the total sum.Return an array answer
of size n
, where answer[i]
represents the result for the corresponding index i
.
Example 1:
Input: nums1 = [4,2,1,5,3], nums2 = [10,20,30,40,50], k = 2
Output: [80,30,0,80,50]
Explanation:
i = 0
: Select the 2 largest values from nums2
at indices [1, 2, 4]
where nums1[j] < nums1[0]
, resulting in 50 + 30 = 80
.i = 1
: Select the 2 largest values from nums2
at index [2]
where nums1[j] < nums1[1]
, resulting in 30.i = 2
: No indices satisfy nums1[j] < nums1[2]
, resulting in 0.i = 3
: Select the 2 largest values from nums2
at indices [0, 1, 2, 4]
where nums1[j] < nums1[3]
, resulting in 50 + 30 = 80
.i = 4
: Select the 2 largest values from nums2
at indices [1, 2]
where nums1[j] < nums1[4]
, resulting in 30 + 20 = 50
.Example 2:
Input: nums1 = [2,2,2,2], nums2 = [3,1,2,3], k = 1
Output: [0,0,0,0]
Explanation:
Since all elements in nums1
are equal, no indices satisfy the condition nums1[j] < nums1[i]
for any i
, resulting in 0 for all positions.
Constraints:
n == nums1.length == nums2.length
1 <= n <= 105
1 <= nums1[i], nums2[i] <= 106
1 <= k <= n