{ "data": { "question": { "questionId": "2482", "questionFrontendId": "2397", "boundTopicId": null, "title": "Maximum Rows Covered by Columns", "titleSlug": "maximum-rows-covered-by-columns", "content": "

You are given a 0-indexed m x n binary matrix matrix and an integer numSelect, which denotes the number of distinct columns you must select from matrix.

\n\n

Let us consider s = {c1, c2, ...., cnumSelect} as the set of columns selected by you. A row row is covered by s if:

\n\n\n\n

You need to choose numSelect columns such that the number of rows that are covered is maximized.

\n\n

Return the maximum number of rows that can be covered by a set of numSelect columns.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: matrix = [[0,0,0],[1,0,1],[0,1,1],[0,0,1]], numSelect = 2\nOutput: 3\nExplanation: One possible way to cover 3 rows is shown in the diagram above.\nWe choose s = {0, 2}.\n- Row 0 is covered because it has no occurrences of 1.\n- Row 1 is covered because the columns with value 1, i.e. 0 and 2 are present in s.\n- Row 2 is not covered because matrix[2][1] == 1 but 1 is not present in s.\n- Row 3 is covered because matrix[2][2] == 1 and 2 is present in s.\nThus, we can cover three rows.\nNote that s = {1, 2} will also cover 3 rows, but it can be shown that no more than three rows can be covered.\n
\n\n

Example 2:

\n\"\"\n
\nInput: matrix = [[1],[0]], numSelect = 1\nOutput: 2\nExplanation: Selecting the only column will result in both rows being covered since the entire matrix is selected.\nTherefore, we return 2.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 250, "dislikes": 389, "isLiked": null, "similarQuestions": "[{\"title\": \"Matchsticks to Square\", \"titleSlug\": \"matchsticks-to-square\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Partition to K Equal Sum Subsets\", \"titleSlug\": \"partition-to-k-equal-sum-subsets\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Find the Shortest Superstring\", \"titleSlug\": \"find-the-shortest-superstring\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Smallest Sufficient Team\", \"titleSlug\": \"smallest-sufficient-team\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Fair Distribution of Cookies\", \"titleSlug\": \"fair-distribution-of-cookies\", \"difficulty\": \"Medium\", \"translatedTitle\": null}]", "exampleTestcases": "[[0,0,0],[1,0,1],[0,1,1],[0,0,1]]\n2\n[[1],[0]]\n1", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Backtracking", "slug": "backtracking", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Bit Manipulation", "slug": "bit-manipulation", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Matrix", "slug": "matrix", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Enumeration", "slug": "enumeration", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int maximumRows(vector>& matrix, int numSelect) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int maximumRows(int[][] matrix, int numSelect) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def maximumRows(self, matrix, numSelect):\n \"\"\"\n :type matrix: List[List[int]]\n :type numSelect: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def maximumRows(self, matrix: List[List[int]], numSelect: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int maximumRows(int** matrix, int matrixSize, int* matrixColSize, int numSelect) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MaximumRows(int[][] matrix, int numSelect) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[][]} matrix\n * @param {number} numSelect\n * @return {number}\n */\nvar maximumRows = function(matrix, numSelect) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function maximumRows(matrix: number[][], numSelect: number): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[][] $matrix\n * @param Integer $numSelect\n * @return Integer\n */\n function maximumRows($matrix, $numSelect) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func maximumRows(_ matrix: [[Int]], _ numSelect: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun maximumRows(matrix: Array, numSelect: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int maximumRows(List> matrix, int numSelect) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func maximumRows(matrix [][]int, numSelect int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[][]} matrix\n# @param {Integer} num_select\n# @return {Integer}\ndef maximum_rows(matrix, num_select)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def maximumRows(matrix: Array[Array[Int]], numSelect: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn maximum_rows(matrix: Vec>, num_select: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (maximum-rows matrix numSelect)\n (-> (listof (listof exact-integer?)) exact-integer? exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec maximum_rows(Matrix :: [[integer()]], NumSelect :: integer()) -> integer().\nmaximum_rows(Matrix, NumSelect) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec maximum_rows(matrix :: [[integer]], num_select :: integer) :: integer\n def maximum_rows(matrix, num_select) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"13.6K\", \"totalSubmission\": \"25.2K\", \"totalAcceptedRaw\": 13600, \"totalSubmissionRaw\": 25212, \"acRate\": \"53.9%\"}", "hints": [ "Try a brute-force approach.", "Iterate through all possible sets of exactly cols columns.", "For each valid set, check how many rows are covered, and return the maximum." ], "solution": null, "status": null, "sampleTestCase": "[[0,0,0],[1,0,1],[0,1,1],[0,0,1]]\n2", "metaData": "{\n \"name\": \"maximumRows\",\n \"params\": [\n {\n \"name\": \"matrix\",\n \"type\": \"integer[][]\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"numSelect\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }