{ "data": { "question": { "questionId": "2652", "questionFrontendId": "2581", "boundTopicId": null, "title": "Count Number of Possible Root Nodes", "titleSlug": "count-number-of-possible-root-nodes", "content": "
Alice has an undirected tree with n
nodes labeled from 0
to n - 1
. The tree is represented as a 2D integer array edges
of length n - 1
where edges[i] = [ai, bi]
indicates that there is an edge between nodes ai
and bi
in the tree.
Alice wants Bob to find the root of the tree. She allows Bob to make several guesses about her tree. In one guess, he does the following:
\n\nu
and v
such that there exists an edge [u, v]
in the tree.u
is the parent of v
in the tree.Bob's guesses are represented by a 2D integer array guesses
where guesses[j] = [uj, vj]
indicates Bob guessed uj
to be the parent of vj
.
Alice being lazy, does not reply to each of Bob's guesses, but just says that at least k
of his guesses are true
.
Given the 2D integer arrays edges
, guesses
and the integer k
, return the number of possible nodes that can be the root of Alice's tree. If there is no such tree, return 0
.
\n
Example 1:
\n\n\n\n\nInput: edges = [[0,1],[1,2],[1,3],[4,2]], guesses = [[1,3],[0,1],[1,0],[2,4]], k = 3\nOutput: 3\nExplanation: \nRoot = 0, correct guesses = [1,3], [0,1], [2,4]\nRoot = 1, correct guesses = [1,3], [1,0], [2,4]\nRoot = 2, correct guesses = [1,3], [1,0], [2,4]\nRoot = 3, correct guesses = [1,0], [2,4]\nRoot = 4, correct guesses = [1,3], [1,0]\nConsidering 0, 1, or 2 as root node leads to 3 correct guesses.\n\n\n\n
Example 2:
\n\n\n\n\nInput: edges = [[0,1],[1,2],[2,3],[3,4]], guesses = [[1,0],[3,4],[2,1],[3,2]], k = 1\nOutput: 5\nExplanation: \nRoot = 0, correct guesses = [3,4]\nRoot = 1, correct guesses = [1,0], [3,4]\nRoot = 2, correct guesses = [1,0], [2,1], [3,4]\nRoot = 3, correct guesses = [1,0], [2,1], [3,2], [3,4]\nRoot = 4, correct guesses = [1,0], [2,1], [3,2]\nConsidering any node as root will give at least 1 correct guess. \n\n\n\n
\n
Constraints:
\n\nedges.length == n - 1
2 <= n <= 105
1 <= guesses.length <= 105
0 <= ai, bi, uj, vj <= n - 1
ai != bi
uj != vj
edges
represents a valid tree.guesses[j]
is an edge of the tree.guesses
is unique.0 <= k <= guesses.length
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }