{ "data": { "question": { "questionId": "3065", "questionFrontendId": "2879", "categoryTitle": "pandas", "boundTopicId": 2467489, "title": "Display the First Three Rows", "titleSlug": "display-the-first-three-rows", "content": "
\nDataFrame: employees
\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| employee_id | int |\n| name | object |\n| department | object |\n| salary | int |\n+-------------+--------+\n
\n\nWrite a solution to display the first 3
rows of this DataFrame.
\n
Example 1:
\n\n\nInput:\nDataFrame employees\n+-------------+-----------+-----------------------+--------+\n| employee_id | name | department | salary |\n+-------------+-----------+-----------------------+--------+\n| 3 | Bob | Operations | 48675 |\n| 90 | Alice | Sales | 11096 |\n| 9 | Tatiana | Engineering | 33805 |\n| 60 | Annabelle | InformationTechnology | 37678 |\n| 49 | Jonathan | HumanResources | 23793 |\n| 43 | Khaled | Administration | 40454 |\n+-------------+-----------+-----------------------+--------+\nOutput:\n+-------------+---------+-------------+--------+\n| employee_id | name | department | salary |\n+-------------+---------+-------------+--------+\n| 3 | Bob | Operations | 48675 |\n| 90 | Alice | Sales | 11096 |\n| 9 | Tatiana | Engineering | 33805 |\n+-------------+---------+-------------+--------+\nExplanation: \nOnly the first 3 rows are displayed.\n", "translatedTitle": "显示前三行", "translatedContent": "
\nDataFrame: employees
\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| employee_id | int |\n| name | object |\n| department | object |\n| salary | int |\n+-------------+--------+\n
\n\n编写一个解决方案,显示这个 DataFrame 的 前 3
行。
\n\n
示例 1:
\n\n\n输入:\nDataFrame employees\n+-------------+-----------+-----------------------+--------+\n| employee_id | name | department | salary |\n+-------------+-----------+-----------------------+--------+\n| 3 | Bob | Operations | 48675 |\n| 90 | Alice | Sales | 11096 |\n| 9 | Tatiana | Engineering | 33805 |\n| 60 | Annabelle | InformationTechnology | 37678 |\n| 49 | Jonathan | HumanResources | 23793 |\n| 43 | Khaled | Administration | 40454 |\n+-------------+-----------+-----------------------+--------+\n输出:\n+-------------+---------+-------------+--------+\n| employee_id | name | department | salary |\n+-------------+---------+-------------+--------+\n| 3 | Bob | Operations | 48675 |\n| 90 | Alice | Sales | 11096 |\n| 9 | Tatiana | Engineering | 33805 |\n+-------------+---------+-------------+--------+\n解释:\n只有前 3 行被显示。\n", "isPaidOnly": false, "difficulty": "Easy", "likes": 1, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}", "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef selectFirstRows(employees: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"2.1K\", \"totalSubmission\": \"2.3K\", \"totalAcceptedRaw\": 2136, \"totalSubmissionRaw\": 2313, \"acRate\": \"92.3%\"}", "hints": [ "Consider using a built-in function in pandas library to retrieve the initial rows." ], "solution": null, "status": null, "sampleTestCase": "{\"headers\":{\"employees\":[\"employee_id\",\"name\",\"department\",\"salary\"]},\"rows\":{\"employees\":[[3,\"Bob\",\"Operations\",48675],[90,\"Alice\",\"Sales\",11096],[9,\"Tatiana\",\"Engineering\",33805],[60,\"Annabelle\",\"InformationTechnology\",37678],[49,\"Jonathan\",\"HumanResources\",23793],[43,\"Khaled\",\"Administration\",40454]]}}", "metaData": "{\n \"pythondata\": [\n \"employees = pd.DataFrame([], columns=['employee_id', 'name', 'department', 'salary']).astype({'employee_id':'Int64', 'name':'object', 'department':'object', 'salary':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"selectFirstRows\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "envInfo": "{\"pythondata\":[\"Pandas\",\"
Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "{\"headers\":{\"employees\":[\"employee_id\",\"name\",\"department\",\"salary\"]},\"rows\":{\"employees\":[[3,\"Bob\",\"Operations\",48675],[90,\"Alice\",\"Sales\",11096],[9,\"Tatiana\",\"Engineering\",33805],[60,\"Annabelle\",\"InformationTechnology\",37678],[49,\"Jonathan\",\"HumanResources\",23793],[43,\"Khaled\",\"Administration\",40454]]}}", "__typename": "QuestionNode" } } }