{ "data": { "question": { "questionId": "3464", "questionFrontendId": "3196", "categoryTitle": "Algorithms", "boundTopicId": 2817390, "title": "Maximize Total Cost of Alternating Subarrays", "titleSlug": "maximize-total-cost-of-alternating-subarrays", "content": "

You are given an integer array nums with length n.

\n\n

The cost of a subarray nums[l..r], where 0 <= l <= r < n, is defined as:

\n\n

cost(l, r) = nums[l] - nums[l + 1] + ... + nums[r] * (−1)r − l

\n\n

Your task is to split nums into subarrays such that the total cost of the subarrays is maximized, ensuring each element belongs to exactly one subarray.

\n\n

Formally, if nums is split into k subarrays, where k > 1, at indices i1, i2, ..., ik − 1, where 0 <= i1 < i2 < ... < ik - 1 < n - 1, then the total cost will be:

\n\n

cost(0, i1) + cost(i1 + 1, i2) + ... + cost(ik − 1 + 1, n − 1)

\n\n

Return an integer denoting the maximum total cost of the subarrays after splitting the array optimally.

\n\n

Note: If nums is not split into subarrays, i.e. k = 1, the total cost is simply cost(0, n - 1).

\n\n

 

\n

Example 1:

\n\n
\n

Input: nums = [1,-2,3,4]

\n\n

Output: 10

\n\n

Explanation:

\n\n

One way to maximize the total cost is by splitting [1, -2, 3, 4] into subarrays [1, -2, 3] and [4]. The total cost will be (1 + 2 + 3) + 4 = 10.

\n
\n\n

Example 2:

\n\n
\n

Input: nums = [1,-1,1,-1]

\n\n

Output: 4

\n\n

Explanation:

\n\n

One way to maximize the total cost is by splitting [1, -1, 1, -1] into subarrays [1, -1] and [1, -1]. The total cost will be (1 + 1) + (1 + 1) = 4.

\n
\n\n

Example 3:

\n\n
\n

Input: nums = [0]

\n\n

Output: 0

\n\n

Explanation:

\n\n

We cannot split the array further, so the answer is 0.

\n
\n\n

Example 4:

\n\n
\n

Input: nums = [1,-1]

\n\n

Output: 2

\n\n

Explanation:

\n\n

Selecting the whole array gives a total cost of 1 + 1 = 2, which is the maximum.

\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": "最大化子数组的总成本", "translatedContent": "

给你一个长度为 n 的整数数组 nums

\n\n

子数组 nums[l..r](其中 0 <= l <= r < n)的 成本 定义为:

\n\n

cost(l, r) = nums[l] - nums[l + 1] + ... + nums[r] * (−1)r − l

\n\n

你的任务是将 nums 分割成若干子数组,使得所有子数组的成本之和 最大化,并确保每个元素 正好 属于一个子数组。

\n\n

具体来说,如果 nums 被分割成 k 个子数组,且分割点为索引 i1, i2, ..., ik − 1(其中 0 <= i1 < i2 < ... < ik - 1 < n - 1),则总成本为:

\n\n

cost(0, i1) + cost(i1 + 1, i2) + ... + cost(ik − 1 + 1, n − 1)

\n\n

返回在最优分割方式下的子数组成本之和的最大值。

\n\n

注意:如果 nums 没有被分割,即 k = 1,则总成本即为 cost(0, n - 1)

\n\n

 

\n\n

示例 1:

\n\n
\n

输入: nums = [1,-2,3,4]

\n\n

输出: 10

\n\n

解释:

\n\n

一种总成本最大化的方法是将 [1, -2, 3, 4] 分割成子数组 [1, -2, 3][4]。总成本为 (1 + 2 + 3) + 4 = 10

\n
\n\n

示例 2:

\n\n
\n

输入: nums = [1,-1,1,-1]

\n\n

输出: 4

\n\n

解释:

\n\n

一种总成本最大化的方法是将 [1, -1, 1, -1] 分割成子数组 [1, -1][1, -1]。总成本为 (1 + 1) + (1 + 1) = 4

\n
\n\n

示例 3:

\n\n
\n

输入: nums = [0]

\n\n

输出: 0

\n\n

解释:

\n\n

无法进一步分割数组,因此答案为 0。

\n
\n\n

示例 4:

\n\n
\n

输入: nums = [1,-1]

\n\n

输出: 2

\n\n

解释:

\n\n

选择整个数组,总成本为 1 + 1 = 2,这是可能的最大成本。

\n
\n\n

 

\n\n

提示:

\n\n\n", "isPaidOnly": false, "difficulty": "Medium", "likes": 13, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false, \"cangjie\": false}", "topicTags": [ { "name": "Array", "slug": "array", "translatedName": "数组", "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": "动态规划", "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n long long maximumTotalCost(vector& nums) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public long maximumTotalCost(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def maximumTotalCost(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def maximumTotalCost(self, nums: List[int]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "long long maximumTotalCost(int* nums, int numsSize) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public long MaximumTotalCost(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @return {number}\n */\nvar maximumTotalCost = function(nums) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function maximumTotalCost(nums: number[]): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @return Integer\n */\n function maximumTotalCost($nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func maximumTotalCost(_ nums: [Int]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun maximumTotalCost(nums: IntArray): Long {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int maximumTotalCost(List nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func maximumTotalCost(nums []int) int64 {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @return {Integer}\ndef maximum_total_cost(nums)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def maximumTotalCost(nums: Array[Int]): Long = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn maximum_total_cost(nums: Vec) -> i64 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (maximum-total-cost nums)\n (-> (listof exact-integer?) exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec maximum_total_cost(Nums :: [integer()]) -> integer().\nmaximum_total_cost(Nums) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec maximum_total_cost(nums :: [integer]) :: integer\n def maximum_total_cost(nums) do\n \n end\nend", "__typename": "CodeSnippetNode" }, { "lang": "Cangjie", "langSlug": "cangjie", "code": "class Solution {\n func maximumTotalCost(nums: Array): Int64 {\n\n }\n}", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"5.7K\", \"totalSubmission\": \"14.2K\", \"totalAcceptedRaw\": 5690, \"totalSubmissionRaw\": 14202, \"acRate\": \"40.1%\"}", "hints": [ "The problem can be solved using dynamic programming.", "Since we can always start a new subarray, the problem is the same as selecting some elements in the array and flipping their signs to negative to maximize the sum. However, we cannot flip the signs of 2 consecutive elements, and the first element in the array cannot be negative.", "Let dp[i][0/1] be the largest sum we can get for prefix nums[0..i], where dp[i][0] is the maximum if the ith element wasn't flipped, and dp[i][1] is the maximum if the ith element was flipped.", "Based on the restriction:
\r\ndp[i][0] = max(dp[i - 1][0], dp[i - 1][1]) + nums[i]
\r\ndp[i][1] = dp[i - 1][0] - nums[i]", "The initial state is:
\r\ndp[1][0] = nums[0] + nums[1]
\r\ndp[1][1] = nums[0] - nums[1]
\r\nand the answer is max(dp[n - 1][0], dp[n - 1][1]).", "Can you optimize the space complexity?" ], "solution": null, "status": null, "sampleTestCase": "[1,-2,3,4]", "metaData": "{\n \"name\": \"maximumTotalCost\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n }\n ],\n \"return\": {\n \"type\": \"long\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "envInfo": "{\"cpp\":[\"C++\",\"

\\u7248\\u672c\\uff1aclang 19<\\/code> \\u91c7\\u7528\\u6700\\u65b0 C++ 23 \\u6807\\u51c6\\uff0c\\u5e76\\u4f7f\\u7528 GCC 14 \\u63d0\\u4f9b\\u7684 libstdc++<\\/code>\\u3002<\\/p>\\r\\n\\r\\n

\\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 -O2<\\/code> \\u7ea7\\u4f18\\u5316\\uff0c\\u5e76\\u63d0\\u4f9b -gline-tables-only<\\/code> \\u53c2\\u6570\\u3002AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b out-of-bounds<\\/code> \\u548c use-after-free<\\/code> \\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\"],\"java\":[\"Java\",\"

\\u7248\\u672c\\uff1aOpenJDK 21<\\/code>\\u3002\\u4f7f\\u7528\\u7f16\\u8bd1\\u53c2\\u6570 --enable-preview --release 21<\\/code><\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u88ab\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n

\\u5305\\u542b Pair \\u7c7b: https:\\/\\/docs.oracle.com\\/javase\\/8\\/javafx\\/api\\/javafx\\/util\\/Pair.html <\\/p>\"],\"python\":[\"Python\",\"

\\u7248\\u672c\\uff1a Python 2.7.18<\\/code><\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982\\uff1aarray<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n

\\u6ce8\\u610f Python 2.7 \\u5df2\\u4e0d\\u518d\\u7ef4\\u62a4<\\/a>\\u3002 \\u5982\\u60f3\\u4f7f\\u7528\\u6700\\u65b0\\u7248\\u7684Python\\uff0c\\u8bf7\\u9009\\u62e9Python 3\\u3002<\\/p>\"],\"c\":[\"C\",\"

\\u7248\\u672c\\uff1aGCC 14<\\/code>\\uff0c\\u91c7\\u7528 GNU11 \\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n

\\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 -O2<\\/code> \\u7ea7\\u4f18\\u5316\\uff0c\\u5e76\\u63d0\\u4f9b -g1<\\/code> \\u53c2\\u6570\\u3002 AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b out-of-bounds<\\/code> \\u548c use-after-free<\\/code> \\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n

\\u5982\\u60f3\\u4f7f\\u7528\\u54c8\\u5e0c\\u8868\\u8fd0\\u7b97, \\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 uthash<\\/a>\\u3002 \\\"uthash.h\\\"\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5bfc\\u5165\\u3002\\u8bf7\\u770b\\u5982\\u4e0b\\u793a\\u4f8b:<\\/p>\\r\\n\\r\\n

1. \\u5f80\\u54c8\\u5e0c\\u8868\\u4e2d\\u6dfb\\u52a0\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            \\/* we'll use this field as the key *\\/\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; \\/* makes this structure hashable *\\/\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n

2. \\u5728\\u54c8\\u5e0c\\u8868\\u4e2d\\u67e5\\u627e\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n

3. \\u4ece\\u54c8\\u5e0c\\u8868\\u4e2d\\u5220\\u9664\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\"],\"csharp\":[\"C#\",\"

C# 13<\\/a> \\u8fd0\\u884c\\u5728 .NET 9 \\u4e0a<\\/p>\"],\"javascript\":[\"JavaScript\",\"

\\u7248\\u672c\\uff1aNode.js 20.10.0<\\/code><\\/p>\\r\\n\\r\\n

\\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u6267\\u884c\\u65f6\\u5c06\\u5e26\\u4e0a --harmony<\\/code> \\u6807\\u8bb0\\u6765\\u5f00\\u542f \\u65b0\\u7248ES6\\u7279\\u6027<\\/a>\\u3002<\\/p>\\r\\n\\r\\n

lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n

\\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@5.4.0<\\/a>\\uff0c datastructures-js\\/queue@4.2.3<\\/a> \\u4ee5\\u53ca datastructures-js\\/deque@1.0.4<\\/a>\\u3002<\\/p>\"],\"ruby\":[\"Ruby\",\"

\\u4f7f\\u7528 Ruby 3.2<\\/code> \\u6267\\u884c<\\/p>\\r\\n\\r\\n

\\u4e00\\u4e9b\\u5e38\\u7528\\u7684\\u6570\\u636e\\u7ed3\\u6784\\u5df2\\u5728 Algorithms \\u6a21\\u5757\\u4e2d\\u63d0\\u4f9b\\uff1ahttps:\\/\\/www.rubydoc.info\\/github\\/kanwei\\/algorithms\\/Algorithms<\\/p>\"],\"swift\":[\"Swift\",\"

\\u7248\\u672c\\uff1aSwift 6.0<\\/code><\\/p>\\r\\n\\r\\n

\\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 swift-algorithms 1.2.0<\\/a>\\uff0cswift-collections 1.1.4<\\/a> \\u548c swift-numerics 1.0.2<\\/a><\\/p>\\r\\n\\r\\n

\\u6211\\u4eec\\u901a\\u5e38\\u4fdd\\u8bc1\\u66f4\\u65b0\\u5230 Apple\\u653e\\u51fa\\u7684\\u6700\\u65b0\\u7248Swift<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u53d1\\u73b0Swift\\u4e0d\\u662f\\u6700\\u65b0\\u7248\\u7684\\uff0c\\u8bf7\\u8054\\u7cfb\\u6211\\u4eec\\uff01\\u6211\\u4eec\\u5c06\\u5c3d\\u5feb\\u66f4\\u65b0\\u3002<\\/p>\"],\"golang\":[\"Go\",\"

\\u7248\\u672c\\uff1aGo 1.23<\\/code><\\/p>\\r\\n\\r\\n

\\u652f\\u6301 https:\\/\\/pkg.go.dev\\/github.com\\/emirpasic\\/gods@v1.18.1<\\/a> \\u548c https:\\/\\/pkg.go.dev\\/github.com\\/emirpasic\\/gods\\/v2@v2.0.0-alpha<\\/a> \\u7b2c\\u4e09\\u65b9\\u5e93\\u3002<\\/p>\"],\"python3\":[\"Python3\",\"

\\u7248\\u672c\\uff1aPython 3.11<\\/code><\\/p>\\r\\n\\r\\n

\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982array<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002 \\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n

\\u5982\\u9700\\u4f7f\\u7528 Map\\/TreeMap \\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 sortedcontainers<\\/a> \\u5e93\\u3002<\\/p>\"],\"scala\":[\"Scala\",\"

\\u7248\\u672c\\uff1aScala 3.3.1<\\/code><\\/p>\"],\"kotlin\":[\"Kotlin\",\"

\\u7248\\u672c\\uff1aKotlin 1.9.0<\\/code><\\/p>\\r\\n\\r\\n

\\u6211\\u4eec\\u4f7f\\u7528\\u7684\\u662f JetBrains \\u63d0\\u4f9b\\u7684 experimental compiler\\u3002\\u5982\\u679c\\u60a8\\u8ba4\\u4e3a\\u60a8\\u9047\\u5230\\u4e86\\u7f16\\u8bd1\\u5668\\u76f8\\u5173\\u7684\\u95ee\\u9898\\uff0c\\u8bf7\\u5411\\u6211\\u4eec\\u53cd\\u9988<\\/p>\"],\"rust\":[\"Rust\",\"

\\u7248\\u672c\\uff1arust 1.79.0<\\/code><\\/p>\\r\\n\\r\\n

\\u652f\\u6301 crates.io \\u7684 rand<\\/a> \\u548c regex<\\/a><\\/p>\"],\"php\":[\"PHP\",\"

PHP 8.2<\\/code>.<\\/p>\\r\\n\\r\\n

With bcmath module.<\\/p>\"],\"typescript\":[\"TypeScript\",\"

TypeScript 5.1.6<\\/p>\\r\\n\\r\\n

Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022<\\/p>\\r\\n\\r\\n

lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n

\\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@5.4.0<\\/a>\\uff0c datastructures-js\\/queue@4.2.3<\\/a> \\u4ee5\\u53ca datastructures-js\\/deque@1.0.4<\\/a>\\u3002<\\/p>\"],\"racket\":[\"Racket\",\"

Racket CS<\\/a> v8.15<\\/p>\\r\\n\\r\\n

\\u4f7f\\u7528 #lang racket<\\/p>\\r\\n\\r\\n

\\u5df2\\u9884\\u5148 (require data\\/gvector data\\/queue data\\/order data\\/heap). \\u82e5\\u9700\\u4f7f\\u7528\\u5176\\u5b83\\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u53ef\\u81ea\\u884c require\\u3002<\\/p>\"],\"erlang\":[\"Erlang\",\"Erlang\\/OTP 26\"],\"elixir\":[\"Elixir\",\"Elixir 1.17 with Erlang\\/OTP 26\"],\"dart\":[\"Dart\",\"

Dart 3.2\\u3002\\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 collection<\\/a> \\u5305<\\/p>\\r\\n\\r\\n

\\u60a8\\u7684\\u4ee3\\u7801\\u5c06\\u4f1a\\u88ab\\u4e0d\\u7f16\\u8bd1\\u76f4\\u63a5\\u8fd0\\u884c<\\/p>\"],\"cangjie\":[\"Cangjie\",\"

\\u7248\\u672c\\uff1a0.53.11 (cjnative)<\\/p>\\r\\n\\r\\n

\\u7f16\\u8bd1\\u53c2\\u6570\\uff1a-O2 --disable-reflection<\\/code><\\/p>\\r\\n\\r\\n

\\u5feb\\u901f\\u5165\\u95e8\\u8bf7\\u67e5\\u9605\\u300c\\u4ed3\\u9889\\u7f16\\u7a0b\\u8bed\\u8a00\\u5f00\\u53d1\\u6307\\u5357\\u300d<\\/a><\\/p>\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "[1,-2,3,4]\n[1,-1,1,-1]\n[0]\n[1,-1]", "__typename": "QuestionNode" } } }