给你一个下标从 0 开始的数组 points
,它表示二维平面上一些点的整数坐标,其中 points[i] = [xi, yi]
。
两点之间的距离定义为它们的曼哈顿距离。
请你恰好移除一个点,返回移除后任意两点之间的 最大 距离可能的 最小 值。
示例 1:
输入:points = [[3,10],[5,15],[10,2],[4,4]] 输出:12 解释:移除每个点后的最大距离如下所示: - 移除第 0 个点后,最大距离在点 (5, 15) 和 (10, 2) 之间,为 |5 - 10| + |15 - 2| = 18 。 - 移除第 1 个点后,最大距离在点 (3, 10) 和 (10, 2) 之间,为 |3 - 10| + |10 - 2| = 15 。 - 移除第 2 个点后,最大距离在点 (5, 15) 和 (4, 4) 之间,为 |5 - 4| + |15 - 4| = 12 。 - 移除第 3 个点后,最大距离在点 (5, 15) 和 (10, 2) 之间的,为 |5 - 10| + |15 - 2| = 18 。 在恰好移除一个点后,任意两点之间的最大距离可能的最小值是 12 。
示例 2:
输入:points = [[1,1],[1,1],[1,1]] 输出:0 解释:移除任一点后,任意两点之间的最大距离都是 0 。
提示:
3 <= points.length <= 105
points[i].length == 2
1 <= points[i][0], points[i][1] <= 108