Given a 0-indexed 2D grid of size m x n, you should find the matrix answer of size m x n.

The value of each cell (r, c) of the matrix answer is calculated in the following way:

Then answer[r][c] = |topLeft[r][c] - bottomRight[r][c]|.

Return the matrix answer.

A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix's end.

A cell (r1, c1) belongs to the top-left diagonal of the cell (r, c), if both belong to the same diagonal and r1 < r. Similarly is defined bottom-right diagonal.

 

Example 1:


Input: grid = [[1,2,3],[3,1,5],[3,2,1]]
Output: [[1,1,0],[1,0,1],[0,1,1]]
Explanation: The 1st diagram denotes the initial grid. 
The 2nd diagram denotes a grid for cell (0,0), where blue-colored cells are cells on its bottom-right diagonal.
The 3rd diagram denotes a grid for cell (1,2), where red-colored cells are cells on its top-left diagonal.
The 4th diagram denotes a grid for cell (1,1), where blue-colored cells are cells on its bottom-right diagonal and red-colored cells are cells on its top-left diagonal.
- The cell (0,0) contains [1,1] on its bottom-right diagonal and [] on its top-left diagonal. The answer is |1 - 0| = 1.
- The cell (1,2) contains [] on its bottom-right diagonal and [2] on its top-left diagonal. The answer is |0 - 1| = 1.
- The cell (1,1) contains [1] on its bottom-right diagonal and [1] on its top-left diagonal. The answer is |1 - 1| = 0.
The answers of other cells are similarly calculated.

Example 2:

Input: grid = [[1]]
Output: [[0]]
Explanation: - The cell (0,0) contains [] on its bottom-right diagonal and [] on its top-left diagonal. The answer is |0 - 0| = 0.

 

Constraints: