{ "data": { "question": { "questionId": "3072", "questionFrontendId": "2889", "categoryTitle": "pandas", "boundTopicId": 2467493, "title": "Reshape Data: Pivot", "titleSlug": "reshape-data-pivot", "content": "
\nDataFrame weather
\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| city | object |\n| month | object |\n| temperature | int |\n+-------------+--------+\n
\n\nWrite a solution to pivot the data so that each row represents temperatures for a specific month, and each city is a separate column.
\n\nThe result format is in the following example.
\n\n\n
\nExample 1:\nInput:\n+--------------+----------+-------------+\n| city | month | temperature |\n+--------------+----------+-------------+\n| Jacksonville | January | 13 |\n| Jacksonville | February | 23 |\n| Jacksonville | March | 38 |\n| Jacksonville | April | 5 |\n| Jacksonville | May | 34 |\n| ElPaso | January | 20 |\n| ElPaso | February | 6 |\n| ElPaso | March | 26 |\n| ElPaso | April | 2 |\n| ElPaso | May | 43 |\n+--------------+----------+-------------+\nOutput:\n+----------+--------+--------------+\n| month | ElPaso | Jacksonville |\n+----------+--------+--------------+\n| April | 2 | 5 |\n| February | 6 | 23 |\n| January | 20 | 13 |\n| March | 26 | 38 |\n| May | 43 | 34 |\n+----------+--------+--------------+
\nExplanation:\nThe table is pivoted, each column represents a city, and each row represents a specific month.
\n",
"translatedTitle": "数据重塑:透视",
"translatedContent": "\nDataFrame weather
\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| city | object |\n| month | object |\n| temperature | int |\n+-------------+--------+\n
\n\n编写一个解决方案,以便将数据 旋转,使得每一行代表特定月份的温度,而每个城市都是一个单独的列。
\n\n输出结果格式如下示例所示。
\n\n\n示例 1:\n\n
\n输入:\n+--------------+----------+-------------+\n| city | month | temperature |\n+--------------+----------+-------------+\n| Jacksonville | January | 13 |\n| Jacksonville | February | 23 |\n| Jacksonville | March | 38 |\n| Jacksonville | April | 5 |\n| Jacksonville | May | 34 |\n| ElPaso | January | 20 |\n| ElPaso | February | 6 |\n| ElPaso | March | 26 |\n| ElPaso | April | 2 |\n| ElPaso | May | 43 |\n+--------------+----------+-------------+\n输出:\n+----------+--------+--------------+\n| month | ElPaso | Jacksonville |\n+----------+--------+--------------+\n| April | 2 | 5 |\n| February | 6 | 23 |\n| January | 20 | 13 |\n| March | 26 | 38 |\n| May | 43 | 34 |\n+----------+--------+--------------+
\n解释:\n表格被旋转,每一列代表一个城市,每一行代表特定的月份。
\n",
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 1,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef pivotTable(weather: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"1.1K\", \"totalSubmission\": \"1.5K\", \"totalAcceptedRaw\": 1130, \"totalSubmissionRaw\": 1506, \"acRate\": \"75.0%\"}",
"hints": [
"Consider using a built-in function in pandas library to transform the data"
],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"weather\":[\"city\",\"month\",\"temperature\"]},\"rows\":{\"weather\":[[\"Jacksonville\",\"January\",13],[\"Jacksonville\",\"February\",23],[\"Jacksonville\",\"March\",38],[\"Jacksonville\",\"April\",5],[\"Jacksonville\",\"May\",34],[\"ElPaso\",\"January\",20],[\"ElPaso\",\"February\",6],[\"ElPaso\",\"March\",26],[\"ElPaso\",\"April\",2],[\"ElPaso\",\"May\",43]]}}",
"metaData": "{\n \"pythondata\": [\n \"weather = pd.DataFrame([], columns=['city', 'month', 'temperature']).astype({'city':'object', 'month':'object', 'temperature':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"pivot_table\",\n \"languages\": [\n \"pythondata\"\n ],\n \"manual\": true\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"envInfo": "{\"pythondata\":[\"Pandas\",\"Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "{\"headers\":{\"weather\":[\"city\",\"month\",\"temperature\"]},\"rows\":{\"weather\":[[\"Jacksonville\",\"January\",13],[\"Jacksonville\",\"February\",23],[\"Jacksonville\",\"March\",38],[\"Jacksonville\",\"April\",5],[\"Jacksonville\",\"May\",34],[\"ElPaso\",\"January\",20],[\"ElPaso\",\"February\",6],[\"ElPaso\",\"March\",26],[\"ElPaso\",\"April\",2],[\"ElPaso\",\"May\",43]]}}", "__typename": "QuestionNode" } } }