<p>There are <code>3n</code> piles of coins of varying size, you and your friends will take piles of coins as follows:</p> <ul> <li>In each step, you will choose <strong>any </strong><code>3</code> piles of coins (not necessarily consecutive).</li> <li>Of your choice, Alice will pick the pile with the maximum number of coins.</li> <li>You will pick the next pile with the maximum number of coins.</li> <li>Your friend Bob will pick the last pile.</li> <li>Repeat until there are no more piles of coins.</li> </ul> <p>Given an array of integers <code>piles</code> where <code>piles[i]</code> is the number of coins in the <code>i<sup>th</sup></code> pile.</p> <p>Return the maximum number of coins that you can have.</p> <p> </p> <p><strong>Example 1:</strong></p> <pre> <strong>Input:</strong> piles = [2,4,1,2,7,8] <strong>Output:</strong> 9 <strong>Explanation: </strong>Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with <strong>7</strong> coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with <strong>2</strong> coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, <strong>2</strong>, 8), (2, <strong>4</strong>, 7) you only get 2 + 4 = 6 coins which is not optimal. </pre> <p><strong>Example 2:</strong></p> <pre> <strong>Input:</strong> piles = [2,4,5] <strong>Output:</strong> 4 </pre> <p><strong>Example 3:</strong></p> <pre> <strong>Input:</strong> piles = [9,8,7,6,5,1,2,3,4] <strong>Output:</strong> 18 </pre> <p> </p> <p><strong>Constraints:</strong></p> <ul> <li><code>3 <= piles.length <= 10<sup>5</sup></code></li> <li><code>piles.length % 3 == 0</code></li> <li><code>1 <= piles[i] <= 10<sup>4</sup></code></li> </ul>