{ "data": { "question": { "questionId": "3074", "questionFrontendId": "2880", "boundTopicId": null, "title": "Select Data", "titleSlug": "select-data", "content": "
\nDataFrame students\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| student_id  | int    |\n| name        | object |\n| age         | int    |\n+-------------+--------+\n\n
\n\n

Write a solution to select the name and age of the student with student_id = 101.

\n\n

The result format is in the following example.

\n\n

 

\n
\nExample 1:\nInput:\n+------------+---------+-----+\n| student_id | name    | age |\n+------------+---------+-----+\n| 101        | Ulysses | 13  |\n| 53         | William | 10  |\n| 128        | Henry   | 6   |\n| 3          | Henry   | 11  |\n+------------+---------+-----+\nOutput:\n+---------+-----+\n| name    | age | \n+---------+-----+\n| Ulysses | 13  |\n+---------+-----+\nExplanation:\nStudent Ulysses has student_id = 101, we select the name and age.
\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 33, "dislikes": 3, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[101,\"Ulysses\",13],[53,\"William\",10],[128,\"Henry\",6],[3,\"Henry\",11]]}}", "categoryTitle": "pandas", "contributors": [], "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef selectData(students: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"12.6K\", \"totalSubmission\": \"16.5K\", \"totalAcceptedRaw\": 12633, \"totalSubmissionRaw\": 16478, \"acRate\": \"76.7%\"}", "hints": [ "Consider applying both row and column filtering to select the desired data." ], "solution": { "id": "2107", "canSeeDetail": true, "paidOnly": false, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[101,\"Ulysses\",13],[53,\"William\",10],[128,\"Henry\",6],[3,\"Henry\",11]]}}", "metaData": "{\n \"pythondata\": [\n \"students = pd.DataFrame([], columns=['student_id', 'name', 'age']).astype({'student_id':'Int64', 'name':'object', 'age':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"selectData\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": false, "envInfo": "{\"pythondata\": [\"Pandas\", \"

Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }