{ "data": { "question": { "questionId": "417", "questionFrontendId": "417", "boundTopicId": null, "title": "Pacific Atlantic Water Flow", "titleSlug": "pacific-atlantic-water-flow", "content": "
There is an m x n
rectangular island that borders both the Pacific Ocean and Atlantic Ocean. The Pacific Ocean touches the island's left and top edges, and the Atlantic Ocean touches the island's right and bottom edges.
The island is partitioned into a grid of square cells. You are given an m x n
integer matrix heights
where heights[r][c]
represents the height above sea level of the cell at coordinate (r, c)
.
The island receives a lot of rain, and the rain water can flow to neighboring cells directly north, south, east, and west if the neighboring cell's height is less than or equal to the current cell's height. Water can flow from any cell adjacent to an ocean into the ocean.
\n\nReturn a 2D list of grid coordinates result
where result[i] = [ri, ci]
denotes that rain water can flow from cell (ri, ci)
to both the Pacific and Atlantic oceans.
\n
Example 1:
\n\n\nInput: heights = [[1,2,2,3,5],[3,2,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]]\nOutput: [[0,4],[1,3],[1,4],[2,2],[3,0],[3,1],[4,0]]\nExplanation: The following cells can flow to the Pacific and Atlantic oceans, as shown below:\n[0,4]: [0,4] -> Pacific Ocean \n [0,4] -> Atlantic Ocean\n[1,3]: [1,3] -> [0,3] -> Pacific Ocean \n [1,3] -> [1,4] -> Atlantic Ocean\n[1,4]: [1,4] -> [1,3] -> [0,3] -> Pacific Ocean \n [1,4] -> Atlantic Ocean\n[2,2]: [2,2] -> [1,2] -> [0,2] -> Pacific Ocean \n [2,2] -> [2,3] -> [2,4] -> Atlantic Ocean\n[3,0]: [3,0] -> Pacific Ocean \n [3,0] -> [4,0] -> Atlantic Ocean\n[3,1]: [3,1] -> [3,0] -> Pacific Ocean \n [3,1] -> [4,1] -> Atlantic Ocean\n[4,0]: [4,0] -> Pacific Ocean \n [4,0] -> Atlantic Ocean\nNote that there are other possible paths for these cells to flow to the Pacific and Atlantic oceans.\n\n\n
Example 2:
\n\n\nInput: heights = [[1]]\nOutput: [[0,0]]\nExplanation: The water can flow from the only cell to the Pacific and Atlantic oceans.\n\n\n
\n
Constraints:
\n\nm == heights.length
n == heights[r].length
1 <= m, n <= 200
0 <= heights[r][c] <= 105
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }