{ "data": { "question": { "questionId": "1017", "questionFrontendId": "975", "boundTopicId": null, "title": "Odd Even Jump", "titleSlug": "odd-even-jump", "content": "
You are given an integer array arr
. From some starting index, you can make a series of jumps. The (1st, 3rd, 5th, ...) jumps in the series are called odd-numbered jumps, and the (2nd, 4th, 6th, ...) jumps in the series are called even-numbered jumps. Note that the jumps are numbered, not the indices.
You may jump forward from index i
to index j
(with i < j
) in the following way:
j
such that arr[i] <= arr[j]
and arr[j]
is the smallest possible value. If there are multiple such indices j
, you can only jump to the smallest such index j
.j
such that arr[i] >= arr[j]
and arr[j]
is the largest possible value. If there are multiple such indices j
, you can only jump to the smallest such index j
.i
, there are no legal jumps.A starting index is good if, starting from that index, you can reach the end of the array (index arr.length - 1
) by jumping some number of times (possibly 0 or more than once).
Return the number of good starting indices.
\n\n\n
Example 1:
\n\n\nInput: arr = [10,13,12,14,15]\nOutput: 2\nExplanation: \nFrom starting index i = 0, we can make our 1st jump to i = 2 (since arr[2] is the smallest among arr[1], arr[2], arr[3], arr[4] that is greater or equal to arr[0]), then we cannot jump any more.\nFrom starting index i = 1 and i = 2, we can make our 1st jump to i = 3, then we cannot jump any more.\nFrom starting index i = 3, we can make our 1st jump to i = 4, so we have reached the end.\nFrom starting index i = 4, we have reached the end already.\nIn total, there are 2 different starting indices i = 3 and i = 4, where we can reach the end with some number of\njumps.\n\n\n
Example 2:
\n\n\nInput: arr = [2,3,1,1,4]\nOutput: 3\nExplanation: \nFrom starting index i = 0, we make jumps to i = 1, i = 2, i = 3:\nDuring our 1st jump (odd-numbered), we first jump to i = 1 because arr[1] is the smallest value in [arr[1], arr[2], arr[3], arr[4]] that is greater than or equal to arr[0].\nDuring our 2nd jump (even-numbered), we jump from i = 1 to i = 2 because arr[2] is the largest value in [arr[2], arr[3], arr[4]] that is less than or equal to arr[1]. arr[3] is also the largest value, but 2 is a smaller index, so we can only jump to i = 2 and not i = 3\nDuring our 3rd jump (odd-numbered), we jump from i = 2 to i = 3 because arr[3] is the smallest value in [arr[3], arr[4]] that is greater than or equal to arr[2].\nWe can't jump from i = 3 to i = 4, so the starting index i = 0 is not good.\nIn a similar manner, we can deduce that:\nFrom starting index i = 1, we jump to i = 4, so we reach the end.\nFrom starting index i = 2, we jump to i = 3, and then we can't jump anymore.\nFrom starting index i = 3, we jump to i = 4, so we reach the end.\nFrom starting index i = 4, we are already at the end.\nIn total, there are 3 different starting indices i = 1, i = 3, and i = 4, where we can reach the end with some\nnumber of jumps.\n\n\n
Example 3:
\n\n\nInput: arr = [5,1,3,4,2]\nOutput: 3\nExplanation: We can reach the end from starting indices 1, 2, and 4.\n\n\n
\n
Constraints:
\n\n1 <= arr.length <= 2 * 104
0 <= arr[i] < 105
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }