{ "data": { "question": { "questionId": "3067", "questionFrontendId": "2884", "boundTopicId": null, "title": "Modify Columns", "titleSlug": "modify-columns", "content": "
\nDataFrame employees\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| name        | object |\n| salary      | int    |\n+-------------+--------+\n
\n\n

A company intends to give its employees a pay rise.

\n\n

Write a solution to modify the salary column by multiplying each salary by 2.

\n\n

The result format is in the following example.

\n\n

 

\n

Example 1:

\n\n
\nInput:\nDataFrame employees\n+---------+--------+\n| name    | salary |\n+---------+--------+\n| Jack    | 19666  |\n| Piper   | 74754  |\n| Mia     | 62509  |\n| Ulysses | 54866  |\n+---------+--------+\nOutput:\n+---------+--------+\n| name    | salary |\n+---------+--------+\n| Jack    | 39332  |\n| Piper   | 149508 |\n| Mia     | 125018 |\n| Ulysses | 109732 |\n+---------+--------+\nExplanation:\nEvery salary has been doubled.
\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Easy", "likes": 25, "dislikes": 3, "isLiked": null, "similarQuestions": "[]", "exampleTestcases": "{\"headers\":{\"employees\":[\"name\",\"salary\"]},\"rows\":{\"employees\":[[\"Jack\",19666],[\"Piper\",74754],[\"Mia\",62509],[\"Ulysses\",54866]]}}", "categoryTitle": "pandas", "contributors": [], "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef modifySalaryColumn(employees: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"11K\", \"totalSubmission\": \"12.3K\", \"totalAcceptedRaw\": 10969, \"totalSubmissionRaw\": 12254, \"acRate\": \"89.5%\"}", "hints": [ "Considering multiplying each salary value by 2, using a simple assignment operation. The calculation of the value is done column-wise." ], "solution": { "id": "2110", "canSeeDetail": true, "paidOnly": false, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "{\"headers\":{\"employees\":[\"name\",\"salary\"]},\"rows\":{\"employees\":[[\"Jack\",19666],[\"Piper\",74754],[\"Mia\",62509],[\"Ulysses\",54866]]}}", "metaData": "{\n \"pythondata\": [\n \"employees = pd.DataFrame([], columns=['name', 'salary']).astype({'name':'object', 'salary':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"modifySalaryColumn\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": false, "envInfo": "{\"pythondata\": [\"Pandas\", \"

Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }