{ "data": { "question": { "questionId": "2328", "questionFrontendId": "2232", "boundTopicId": null, "title": "Minimize Result by Adding Parentheses to Expression", "titleSlug": "minimize-result-by-adding-parentheses-to-expression", "content": "
You are given a 0-indexed string expression
of the form "<num1>+<num2>"
where <num1>
and <num2>
represent positive integers.
Add a pair of parentheses to expression
such that after the addition of parentheses, expression
is a valid mathematical expression and evaluates to the smallest possible value. The left parenthesis must be added to the left of '+'
and the right parenthesis must be added to the right of '+'
.
Return expression
after adding a pair of parentheses such that expression
evaluates to the smallest possible value. If there are multiple answers that yield the same result, return any of them.
The input has been generated such that the original value of expression
, and the value of expression
after adding any pair of parentheses that meets the requirements fits within a signed 32-bit integer.
\n
Example 1:
\n\n\nInput: expression = "247+38"\nOutput: "2(47+38)"\nExplanation: The\n\nexpression
evaluates to 2 * (47 + 38) = 2 * 85 = 170.\nNote that "2(4)7+38" is invalid because the right parenthesis must be to the right of the'+'
.\nIt can be shown that 170 is the smallest possible value.\n
Example 2:
\n\n\nInput: expression = "12+34"\nOutput: "1(2+3)4"\nExplanation: The expression evaluates to 1 * (2 + 3) * 4 = 1 * 5 * 4 = 20.\n\n\n
Example 3:
\n\n\nInput: expression = "999+999"\nOutput: "(999+999)"\nExplanation: The expression
evaluates to 999 + 999 = 1998.\n
\n\n\n
Constraints:
\n\n3 <= expression.length <= 10
expression
consists of digits from '1'
to '9'
and '+'
.expression
starts and ends with digits.expression
contains exactly one '+'
.expression
, and the value of expression
after adding any pair of parentheses that meets the requirements fits within a signed 32-bit integer.Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }