{ "data": { "question": { "questionId": "2894", "questionFrontendId": "2813", "boundTopicId": null, "title": "Maximum Elegance of a K-Length Subsequence", "titleSlug": "maximum-elegance-of-a-k-length-subsequence", "content": "

You are given a 0-indexed 2D integer array items of length n and an integer k.

\n\n

items[i] = [profiti, categoryi], where profiti and categoryi denote the profit and category of the ith item respectively.

\n\n

Let's define the elegance of a subsequence of items as total_profit + distinct_categories2, where total_profit is the sum of all profits in the subsequence, and distinct_categories is the number of distinct categories from all the categories in the selected subsequence.

\n\n

Your task is to find the maximum elegance from all subsequences of size k in items.

\n\n

Return an integer denoting the maximum elegance of a subsequence of items with size exactly k.

\n\n

Note: A subsequence of an array is a new array generated from the original array by deleting some elements (possibly none) without changing the remaining elements' relative order.

\n\n

 

\n

Example 1:

\n\n
\nInput: items = [[3,2],[5,1],[10,1]], k = 2\nOutput: 17\nExplanation: In this example, we have to select a subsequence of size 2.\nWe can select items[0] = [3,2] and items[2] = [10,1].\nThe total profit in this subsequence is 3 + 10 = 13, and the subsequence contains 2 distinct categories [2,1].\nHence, the elegance is 13 + 22 = 17, and we can show that it is the maximum achievable elegance. \n
\n\n

Example 2:

\n\n
\nInput: items = [[3,1],[3,1],[2,2],[5,3]], k = 3\nOutput: 19\nExplanation: In this example, we have to select a subsequence of size 3. \nWe can select items[0] = [3,1], items[2] = [2,2], and items[3] = [5,3]. \nThe total profit in this subsequence is 3 + 2 + 5 = 10, and the subsequence contains 3 distinct categories [1,2,3]. \nHence, the elegance is 10 + 32 = 19, and we can show that it is the maximum achievable elegance.
\n\n

Example 3:

\n\n
\nInput: items = [[1,1],[2,1],[3,1]], k = 3\nOutput: 7\nExplanation: In this example, we have to select a subsequence of size 3. \nWe should select all the items. \nThe total profit will be 1 + 2 + 3 = 6, and the subsequence contains 1 distinct category [1]. \nHence, the maximum elegance is 6 + 12 = 7.  
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 270, "dislikes": 3, "isLiked": null, "similarQuestions": "[{\"title\": \"IPO\", \"titleSlug\": \"ipo\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "[[3,2],[5,1],[10,1]]\n2\n[[3,1],[3,1],[2,2],[5,3]]\n3\n[[1,1],[2,1],[3,1]]\n3", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Hash Table", "slug": "hash-table", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Greedy", "slug": "greedy", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Heap (Priority Queue)", "slug": "heap-priority-queue", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n long long findMaximumElegance(vector>& items, int k) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public long findMaximumElegance(int[][] items, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def findMaximumElegance(self, items, k):\n \"\"\"\n :type items: List[List[int]]\n :type k: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def findMaximumElegance(self, items: List[List[int]], k: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "long long findMaximumElegance(int** items, int itemsSize, int* itemsColSize, int k){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public long FindMaximumElegance(int[][] items, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[][]} items\n * @param {number} k\n * @return {number}\n */\nvar findMaximumElegance = function(items, k) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function findMaximumElegance(items: number[][], k: number): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[][] $items\n * @param Integer $k\n * @return Integer\n */\n function findMaximumElegance($items, $k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func findMaximumElegance(_ items: [[Int]], _ k: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun findMaximumElegance(items: Array, k: Int): Long {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int findMaximumElegance(List> items, int k) {\n\n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func findMaximumElegance(items [][]int, k int) int64 {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[][]} items\n# @param {Integer} k\n# @return {Integer}\ndef find_maximum_elegance(items, k)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def findMaximumElegance(items: Array[Array[Int]], k: Int): Long = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn find_maximum_elegance(items: Vec>, k: i32) -> i64 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (find-maximum-elegance items k)\n (-> (listof (listof exact-integer?)) exact-integer? exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec find_maximum_elegance(Items :: [[integer()]], K :: integer()) -> integer().\nfind_maximum_elegance(Items, K) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec find_maximum_elegance(items :: [[integer]], k :: integer) :: integer\n def find_maximum_elegance(items, k) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"5.1K\", \"totalSubmission\": \"16.2K\", \"totalAcceptedRaw\": 5135, \"totalSubmissionRaw\": 16181, \"acRate\": \"31.7%\"}", "hints": [ "
Greedy algorithm.
", "
Sort items in non-increasing order of profits.
", "
Select the first k items (the top k most profitable items). Keep track of the items as the candidate set.
", "
For the remaining n - k items sorted in non-increasing order of profits, try replacing an item in the candidate set using the current item.
", "
The replacing item should add a new category to the candidate set and should remove the item with the minimum profit that occurs more than once in the candidate set.
" ], "solution": null, "status": null, "sampleTestCase": "[[3,2],[5,1],[10,1]]\n2", "metaData": "{\n \"name\": \"findMaximumElegance\",\n \"params\": [\n {\n \"name\": \"items\",\n \"type\": \"integer[][]\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k\"\n }\n ],\n \"return\": {\n \"type\": \"long\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }