{ "data": { "question": { "questionId": "1014", "questionFrontendId": "973", "boundTopicId": null, "title": "K Closest Points to Origin", "titleSlug": "k-closest-points-to-origin", "content": "

Given an array of points where points[i] = [xi, yi] represents a point on the X-Y plane and an integer k, return the k closest points to the origin (0, 0).

\n\n

The distance between two points on the X-Y plane is the Euclidean distance (i.e., √(x1 - x2)2 + (y1 - y2)2).

\n\n

You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in).

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: points = [[1,3],[-2,2]], k = 1\nOutput: [[-2,2]]\nExplanation:\nThe distance between (1, 3) and the origin is sqrt(10).\nThe distance between (-2, 2) and the origin is sqrt(8).\nSince sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.\nWe only want the closest k = 1 points from the origin, so the answer is just [[-2,2]].\n
\n\n

Example 2:

\n\n
\nInput: points = [[3,3],[5,-1],[-2,4]], k = 2\nOutput: [[3,3],[-2,4]]\nExplanation: The answer [[-2,4],[3,3]] would also be accepted.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 8072, "dislikes": 287, "isLiked": null, "similarQuestions": "[{\"title\": \"Kth Largest Element in an Array\", \"titleSlug\": \"kth-largest-element-in-an-array\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Top K Frequent Elements\", \"titleSlug\": \"top-k-frequent-elements\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Top K Frequent Words\", \"titleSlug\": \"top-k-frequent-words\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Find Nearest Point That Has the Same X or Y Coordinate\", \"titleSlug\": \"find-nearest-point-that-has-the-same-x-or-y-coordinate\", \"difficulty\": \"Easy\", \"translatedTitle\": null}]", "exampleTestcases": "[[1,3],[-2,2]]\n1\n[[3,3],[5,-1],[-2,4]]\n2", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Math", "slug": "math", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Divide and Conquer", "slug": "divide-and-conquer", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Geometry", "slug": "geometry", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Sorting", "slug": "sorting", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Heap (Priority Queue)", "slug": "heap-priority-queue", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Quickselect", "slug": "quickselect", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector> kClosest(vector>& points, int k) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int[][] kClosest(int[][] points, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def kClosest(self, points, k):\n \"\"\"\n :type points: List[List[int]]\n :type k: int\n :rtype: List[List[int]]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "/**\n * Return an array of arrays of size *returnSize.\n * The sizes of the arrays are returned as *returnColumnSizes array.\n * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().\n */\nint** kClosest(int** points, int pointsSize, int* pointsColSize, int k, int* returnSize, int** returnColumnSizes) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int[][] KClosest(int[][] points, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[][]} points\n * @param {number} k\n * @return {number[][]}\n */\nvar kClosest = function(points, k) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function kClosest(points: number[][], k: number): number[][] {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[][] $points\n * @param Integer $k\n * @return Integer[][]\n */\n function kClosest($points, $k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func kClosest(_ points: [[Int]], _ k: Int) -> [[Int]] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun kClosest(points: Array, k: Int): Array {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n List> kClosest(List> points, int k) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func kClosest(points [][]int, k int) [][]int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[][]} points\n# @param {Integer} k\n# @return {Integer[][]}\ndef k_closest(points, k)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def kClosest(points: Array[Array[Int]], k: Int): Array[Array[Int]] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn k_closest(points: Vec>, k: i32) -> Vec> {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (k-closest points k)\n (-> (listof (listof exact-integer?)) exact-integer? (listof (listof exact-integer?)))\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec k_closest(Points :: [[integer()]], K :: integer()) -> [[integer()]].\nk_closest(Points, K) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec k_closest(points :: [[integer]], k :: integer) :: [[integer]]\n def k_closest(points, k) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"1.1M\", \"totalSubmission\": \"1.6M\", \"totalAcceptedRaw\": 1086220, \"totalSubmissionRaw\": 1646276, \"acRate\": \"66.0%\"}", "hints": [], "solution": { "id": "1272", "canSeeDetail": false, "paidOnly": true, "hasVideoSolution": false, "paidOnlyVideo": true, "__typename": "ArticleNode" }, "status": null, "sampleTestCase": "[[1,3],[-2,2]]\n1", "metaData": "{\n \"name\": \"kClosest\",\n \"params\": [\n {\n \"name\": \"points\",\n \"type\": \"integer[][]\"\n },\n {\n \"name\": \"k\",\n \"type\": \"integer\"\n }\n ],\n \"return\": {\n \"type\": \"integer[][]\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }