{ "data": { "question": { "questionId": "1456", "questionFrontendId": "1334", "boundTopicId": null, "title": "Find the City With the Smallest Number of Neighbors at a Threshold Distance", "titleSlug": "find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance", "content": "

There are n cities numbered from 0 to n-1. Given the array edges where edges[i] = [fromi, toi, weighti] represents a bidirectional and weighted edge between cities fromi and toi, and given the integer distanceThreshold.

\n\n

Return the city with the smallest number of cities that are reachable through some path and whose distance is at most distanceThreshold, If there are multiple such cities, return the city with the greatest number.

\n\n

Notice that the distance of a path connecting cities i and j is equal to the sum of the edges' weights along that path.

\n\n

 

\n

Example 1:

\n\"\"\n
\nInput: n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4\nOutput: 3\nExplanation: The figure above describes the graph. \nThe neighboring cities at a distanceThreshold = 4 for each city are:\nCity 0 -> [City 1, City 2] \nCity 1 -> [City 0, City 2, City 3] \nCity 2 -> [City 0, City 1, City 3] \nCity 3 -> [City 1, City 2] \nCities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.\n
\n\n

Example 2:

\n\"\"\n
\nInput: n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2\nOutput: 0\nExplanation: The figure above describes the graph. \nThe neighboring cities at a distanceThreshold = 2 for each city are:\nCity 0 -> [City 1] \nCity 1 -> [City 0, City 4] \nCity 2 -> [City 3, City 4] \nCity 3 -> [City 2, City 4]\nCity 4 -> [City 1, City 2, City 3] \nThe city 0 has 1 neighboring city at a distanceThreshold = 2.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 2452, "dislikes": 82, "isLiked": null, "similarQuestions": "[{\"title\": \"Second Minimum Time to Reach Destination\", \"titleSlug\": \"second-minimum-time-to-reach-destination\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "4\n[[0,1,3],[1,2,1],[1,3,4],[2,3,1]]\n4\n5\n[[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]]\n2", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Graph", "slug": "graph", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Shortest Path", "slug": "shortest-path", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int findTheCity(int n, vector>& edges, int distanceThreshold) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int findTheCity(int n, int[][] edges, int distanceThreshold) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def findTheCity(self, n, edges, distanceThreshold):\n \"\"\"\n :type n: int\n :type edges: List[List[int]]\n :type distanceThreshold: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "int findTheCity(int n, int** edges, int edgesSize, int* edgesColSize, int distanceThreshold) {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int FindTheCity(int n, int[][] edges, int distanceThreshold) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number} n\n * @param {number[][]} edges\n * @param {number} distanceThreshold\n * @return {number}\n */\nvar findTheCity = function(n, edges, distanceThreshold) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function findTheCity(n: number, edges: number[][], distanceThreshold: number): number {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer $n\n * @param Integer[][] $edges\n * @param Integer $distanceThreshold\n * @return Integer\n */\n function findTheCity($n, $edges, $distanceThreshold) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func findTheCity(_ n: Int, _ edges: [[Int]], _ distanceThreshold: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun findTheCity(n: Int, edges: Array, distanceThreshold: Int): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Dart", "langSlug": "dart", "code": "class Solution {\n int findTheCity(int n, List> edges, int distanceThreshold) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func findTheCity(n int, edges [][]int, distanceThreshold int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer} n\n# @param {Integer[][]} edges\n# @param {Integer} distance_threshold\n# @return {Integer}\ndef find_the_city(n, edges, distance_threshold)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def findTheCity(n: Int, edges: Array[Array[Int]], distanceThreshold: Int): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn find_the_city(n: i32, edges: Vec>, distance_threshold: i32) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (find-the-city n edges distanceThreshold)\n (-> exact-integer? (listof (listof exact-integer?)) exact-integer? exact-integer?)\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec find_the_city(N :: integer(), Edges :: [[integer()]], DistanceThreshold :: integer()) -> integer().\nfind_the_city(N, Edges, DistanceThreshold) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec find_the_city(n :: integer, edges :: [[integer]], distance_threshold :: integer) :: integer\n def find_the_city(n, edges, distance_threshold) do\n \n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"83.2K\", \"totalSubmission\": \"142.3K\", \"totalAcceptedRaw\": 83225, \"totalSubmissionRaw\": 142347, \"acRate\": \"58.5%\"}", "hints": [ "Use Floyd-Warshall's algorithm to compute any-point to any-point distances. (Or can also do Dijkstra from every node due to the weights are non-negative).", "For each city calculate the number of reachable cities within the threshold, then search for the optimal city." ], "solution": null, "status": null, "sampleTestCase": "4\n[[0,1,3],[1,2,1],[1,3,4],[2,3,1]]\n4", "metaData": "{\n \"name\": \"findTheCity\",\n \"params\": [\n {\n \"name\": \"n\",\n \"type\": \"integer\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"edges\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"distanceThreshold\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 20 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17. Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.21

\\r\\n

Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.9.0.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 5.1.6, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2022 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 25.0\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.4 with Erlang/OTP 25.0\"], \"dart\": [\"Dart\", \"

Dart 2.17.3

\\r\\n\\r\\n

Your code will be run directly without compiling

\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }