{
"data": {
"question": {
"questionId": "3204",
"questionFrontendId": "2921",
"boundTopicId": null,
"title": "Maximum Profitable Triplets With Increasing Prices II",
"titleSlug": "maximum-profitable-triplets-with-increasing-prices-ii",
"content": null,
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": true,
"difficulty": "Hard",
"likes": 7,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"exampleTestcases": "[10,2,3,4]\n[100,2,7,10]\n[1,2,3,4,5]\n[1,5,3,4,6]\n[4,3,2,1]\n[33,20,19,87]",
"categoryTitle": "Algorithms",
"contributors": [],
"topicTags": [
{
"name": "Array",
"slug": "array",
"translatedName": null,
"__typename": "TopicTagNode"
},
{
"name": "Binary Indexed Tree",
"slug": "binary-indexed-tree",
"translatedName": null,
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": null,
"stats": "{\"totalAccepted\": \"257\", \"totalSubmission\": \"450\", \"totalAcceptedRaw\": 257, \"totalSubmissionRaw\": 450, \"acRate\": \"57.1%\"}",
"hints": [
"Let's fix the middle chosen item for instance index j
.",
"Let’s define an array max_right
, where max_right[j]
represents the maximum profit[k]
for every index k > j
such that prices[k] > prices[j]
.",
"Consider using a Fenwick tree to fill the max_right
.",
"Do the same for items with an index i < j
such that prices[i] < prices[j]
and find the maximum profit[i]
among them. Let's call this array max_left
.",
"Now the profit when an item with the index j
is the middle one would be profit[j] + max_right[j] + max_left[j]
.",
"Finally, do the above procedure for all j
's and find the maximum profit among them. That would be the final answer."
],
"solution": null,
"status": null,
"sampleTestCase": "[10,2,3,4]\n[100,2,7,10]",
"metaData": "{\n \"name\": \"maxProfit\",\n \"params\": [\n {\n \"name\": \"prices\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"profits\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": true,
"envInfo": "{\"cpp\": [\"C++\", \"
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.21
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }