{ "data": { "question": { "questionId": "1183", "questionFrontendId": "1093", "categoryTitle": "Algorithms", "boundTopicId": 10003, "title": "Statistics from a Large Sample", "titleSlug": "statistics-from-a-large-sample", "content": "
You are given a large sample of integers in the range [0, 255]
. Since the sample is so large, it is represented by an array count
where count[k]
is the number of times that k
appears in the sample.
Calculate the following statistics:
\n\nminimum
: The minimum element in the sample.maximum
: The maximum element in the sample.mean
: The average of the sample, calculated as the total sum of all elements divided by the total number of elements.median
:\n\tmedian
is the middle element once the sample is sorted.median
is the average of the two middle elements once the sample is sorted.mode
: The number that appears the most in the sample. It is guaranteed to be unique.Return the statistics of the sample as an array of floating-point numbers [minimum, maximum, mean, median, mode]
. Answers within 10-5
of the actual answer will be accepted.
\n
Example 1:
\n\n\nInput: count = [0,1,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\nOutput: [1.00000,3.00000,2.37500,2.50000,3.00000]\nExplanation: The sample represented by count is [1,2,2,2,3,3,3,3].\nThe minimum and maximum are 1 and 3 respectively.\nThe mean is (1+2+2+2+3+3+3+3) / 8 = 19 / 8 = 2.375.\nSince the size of the sample is even, the median is the average of the two middle elements 2 and 3, which is 2.5.\nThe mode is 3 as it appears the most in the sample.\n\n\n
Example 2:
\n\n\nInput: count = [0,4,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\nOutput: [1.00000,4.00000,2.18182,2.00000,1.00000]\nExplanation: The sample represented by count is [1,1,1,1,2,2,2,3,3,4,4].\nThe minimum and maximum are 1 and 4 respectively.\nThe mean is (1+1+1+1+2+2+2+3+3+4+4) / 11 = 24 / 11 = 2.18181818... (for display purposes, the output shows the rounded number 2.18182).\nSince the size of the sample is odd, the median is the middle element 2.\nThe mode is 1 as it appears the most in the sample.\n\n\n
\n
Constraints:
\n\ncount.length == 256
0 <= count[i] <= 109
1 <= sum(count) <= 109
count
represents is unique.我们对 0
到 255
之间的整数进行采样,并将结果存储在数组 count
中:count[k]
就是整数 k
在样本中出现的次数。
计算以下统计数据:
\n\nminimum
:样本中的最小元素。maximum
:样品中的最大元素。mean
:样本的平均值,计算为所有元素的总和除以元素总数。median
:\n\tmedian
就是中间的元素。median
就是样本排序后中间两个元素的平均值。mode
:样本中出现次数最多的数字。保众数是 唯一 的。以浮点数数组的形式返回样本的统计信息 [minimum, maximum, mean, median, mode]
。与真实答案误差在 10-5
内的答案都可以通过。
\n\n
示例 1:
\n\n\n输入:count = [0,1,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n输出:[1.00000,3.00000,2.37500,2.50000,3.00000]\n解释:用count表示的样本为[1,2,2,2,3,3,3,3]。\n最小值和最大值分别为1和3。\n均值是(1+2+2+2+3+3+3+3) / 8 = 19 / 8 = 2.375。\n因为样本的大小是偶数,所以中位数是中间两个元素2和3的平均值,也就是2.5。\n众数为3,因为它在样本中出现的次数最多。\n\n
示例 2:
\n\n\n输入:count = [0,4,3,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n输出:[1.00000,4.00000,2.18182,2.00000,1.00000]\n解释:用count表示的样本为[1,1,1,1,2,2,3,3,3,4,4]。\n最小值为1,最大值为4。\n平均数是(1+1+1+1+2+2+2+3+3+4+4)/ 11 = 24 / 11 = 2.18181818…(为了显示,输出显示了整数2.18182)。\n因为样本的大小是奇数,所以中值是中间元素2。\n众数为1,因为它在样本中出现的次数最多。\n\n\n
\n\n
提示:
\n\ncount.length == 256
0 <= count[i] <= 109
1 <= sum(count) <= 109
count
的众数是 唯一 的\\u7248\\u672c\\uff1a \\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 \\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\"],\"java\":[\"Java\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u88ab\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5305\\u542b Pair \\u7c7b: https:\\/\\/docs.oracle.com\\/javase\\/8\\/javafx\\/api\\/javafx\\/util\\/Pair.html <\\/p>\"],\"python\":[\"Python\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982\\uff1aarray<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u6ce8\\u610f Python 2.7 \\u5c06\\u57282020\\u5e74\\u540e\\u4e0d\\u518d\\u7ef4\\u62a4<\\/a>\\u3002 \\u5982\\u60f3\\u4f7f\\u7528\\u6700\\u65b0\\u7248\\u7684Python\\uff0c\\u8bf7\\u9009\\u62e9Python 3\\u3002<\\/p>\"],\"c\":[\"C\",\" \\u7248\\u672c\\uff1a \\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 \\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u60f3\\u4f7f\\u7528\\u54c8\\u5e0c\\u8868\\u8fd0\\u7b97, \\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 uthash<\\/a>\\u3002 \\\"uthash.h\\\"\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5bfc\\u5165\\u3002\\u8bf7\\u770b\\u5982\\u4e0b\\u793a\\u4f8b:<\\/p>\\r\\n\\r\\n 1. \\u5f80\\u54c8\\u5e0c\\u8868\\u4e2d\\u6dfb\\u52a0\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n 2. \\u5728\\u54c8\\u5e0c\\u8868\\u4e2d\\u67e5\\u627e\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n 3. \\u4ece\\u54c8\\u5e0c\\u8868\\u4e2d\\u5220\\u9664\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n C# 10<\\/a> \\u8fd0\\u884c\\u5728 .NET 6 \\u4e0a<\\/p>\"],\"javascript\":[\"JavaScript\",\" \\u7248\\u672c\\uff1a \\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u6267\\u884c\\u65f6\\u5c06\\u5e26\\u4e0a lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@5.3.0<\\/a> \\u548c datastructures-js\\/queue@4.2.1<\\/a>\\u3002<\\/p>\"],\"ruby\":[\"Ruby\",\" \\u4f7f\\u7528 \\u4e00\\u4e9b\\u5e38\\u7528\\u7684\\u6570\\u636e\\u7ed3\\u6784\\u5df2\\u5728 Algorithms \\u6a21\\u5757\\u4e2d\\u63d0\\u4f9b\\uff1ahttps:\\/\\/www.rubydoc.info\\/github\\/kanwei\\/algorithms\\/Algorithms<\\/p>\"],\"swift\":[\"Swift\",\" \\u7248\\u672c\\uff1a \\u6211\\u4eec\\u901a\\u5e38\\u4fdd\\u8bc1\\u66f4\\u65b0\\u5230 Apple\\u653e\\u51fa\\u7684\\u6700\\u65b0\\u7248Swift<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u53d1\\u73b0Swift\\u4e0d\\u662f\\u6700\\u65b0\\u7248\\u7684\\uff0c\\u8bf7\\u8054\\u7cfb\\u6211\\u4eec\\uff01\\u6211\\u4eec\\u5c06\\u5c3d\\u5feb\\u66f4\\u65b0\\u3002<\\/p>\"],\"golang\":[\"Go\",\" \\u7248\\u672c\\uff1a \\u652f\\u6301 https:\\/\\/godoc.org\\/github.com\\/emirpasic\\/gods@v1.18.1<\\/a> \\u7b2c\\u4e09\\u65b9\\u5e93\\u3002<\\/p>\"],\"python3\":[\"Python3\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982array<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002 \\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528 Map\\/TreeMap \\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 sortedcontainers<\\/a> \\u5e93\\u3002<\\/p>\"],\"scala\":[\"Scala\",\" \\u7248\\u672c\\uff1a \\u7248\\u672c\\uff1a \\u6211\\u4eec\\u4f7f\\u7528\\u7684\\u662f JetBrains \\u63d0\\u4f9b\\u7684 experimental compiler\\u3002\\u5982\\u679c\\u60a8\\u8ba4\\u4e3a\\u60a8\\u9047\\u5230\\u4e86\\u7f16\\u8bd1\\u5668\\u76f8\\u5173\\u7684\\u95ee\\u9898\\uff0c\\u8bf7\\u5411\\u6211\\u4eec\\u53cd\\u9988<\\/p>\"],\"rust\":[\"Rust\",\" \\u7248\\u672c\\uff1a \\u652f\\u6301 crates.io \\u7684 rand<\\/a><\\/p>\"],\"php\":[\"PHP\",\" With bcmath module.<\\/p>\"],\"typescript\":[\"TypeScript\",\" TypeScript 5.1.6<\\/p>\\r\\n\\r\\n Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022<\\/p>\\r\\n\\r\\n lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@5.3.0<\\/a> \\u548c datastructures-js\\/queue@4.2.1<\\/a>\\u3002<\\/p>\"],\"racket\":[\"Racket\",\"clang 11<\\/code> \\u91c7\\u7528\\u6700\\u65b0C++ 20\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n
-O2<\\/code>\\u7ea7\\u4f18\\u5316\\u3002AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b
out-of-bounds<\\/code>\\u548c
use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n
OpenJDK 17<\\/code>\\u3002\\u53ef\\u4ee5\\u4f7f\\u7528Java 8\\u7684\\u7279\\u6027\\u4f8b\\u5982\\uff0clambda expressions \\u548c stream API\\u3002<\\/p>\\r\\n\\r\\n
Python 2.7.12<\\/code><\\/p>\\r\\n\\r\\n
GCC 8.2<\\/code>\\uff0c\\u91c7\\u7528GNU11\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n
-O1<\\/code>\\u7ea7\\u4f18\\u5316\\u3002 AddressSanitizer<\\/a>\\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b
out-of-bounds<\\/code>\\u548c
use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; \\/* we'll use this field as the key *\\/\\r\\n char name[10];\\r\\n UT_hash_handle hh; \\/* makes this structure hashable *\\/\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\"],\"csharp\":[\"C#\",\"
Node.js 16.13.2<\\/code><\\/p>\\r\\n\\r\\n
--harmony<\\/code> \\u6807\\u8bb0\\u6765\\u5f00\\u542f \\u65b0\\u7248ES6\\u7279\\u6027<\\/a>\\u3002<\\/p>\\r\\n\\r\\n
Ruby 3.1<\\/code>\\u6267\\u884c<\\/p>\\r\\n\\r\\n
Swift 5.5.2<\\/code><\\/p>\\r\\n\\r\\n
Go 1.21<\\/code><\\/p>\\r\\n\\r\\n
Python 3.10<\\/code><\\/p>\\r\\n\\r\\n
Scala 2.13<\\/code><\\/p>\"],\"kotlin\":[\"Kotlin\",\"
Kotlin 1.9.0<\\/code><\\/p>\\r\\n\\r\\n
rust 1.58.1<\\/code><\\/p>\\r\\n\\r\\n
PHP 8.1<\\/code>.<\\/p>\\r\\n\\r\\n