{ "data": { "question": { "questionId": "3073", "questionFrontendId": "2890", "categoryTitle": "pandas", "boundTopicId": 2467495, "title": "Reshape Data: Melt", "titleSlug": "reshape-data-melt", "content": "
\nDataFrame report\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| product     | object |\n| quarter_1   | int    |\n| quarter_2   | int    |\n| quarter_3   | int    |\n| quarter_4   | int    |\n+-------------+--------+\n
\n\n

Write a solution to reshape the data so that each row represents sales data for a product in a specific quarter.

\n\n

The result format is in the following example.

\n\n

 

\n

Example 1:

\n\n
\nInput:\n+-------------+-----------+-----------+-----------+-----------+\n| product     | quarter_1 | quarter_2 | quarter_3 | quarter_4 |\n+-------------+-----------+-----------+-----------+-----------+\n| Umbrella    | 417       | 224       | 379       | 611       |\n| SleepingBag | 800       | 936       | 93        | 875       |\n+-------------+-----------+-----------+-----------+-----------+\nOutput:\n+-------------+-----------+-------+\n| product     | quarter   | sales |\n+-------------+-----------+-------+\n| Umbrella    | quarter_1 | 417   |\n| SleepingBag | quarter_1 | 800   |\n| Umbrella    | quarter_2 | 224   |\n| SleepingBag | quarter_2 | 936   |\n| Umbrella    | quarter_3 | 379   |\n| SleepingBag | quarter_3 | 93    |\n| Umbrella    | quarter_4 | 611   |\n| SleepingBag | quarter_4 | 875   |\n+-------------+-----------+-------+\nExplanation:\nThe DataFrame is reshaped from wide to long format. Each row represents the sales of a product in a quarter.\n
\n", "translatedTitle": "重塑数据:融合", "translatedContent": "
\nDataFrame report\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| product     | object |\n| quarter_1   | int    |\n| quarter_2   | int    |\n| quarter_3   | int    |\n| quarter_4   | int    |\n+-------------+--------+\n
\n\n

编写一个解决方案,将数据 重塑 成每一行表示特定季度产品销售数据的形式。

\n\n

结果格式如下例所示:

\n\n

 

\n\n

示例 1:

\n\n
\n输入:\n+-------------+-----------+-----------+-----------+-----------+\n| product     | quarter_1 | quarter_2 | quarter_3 | quarter_4 |\n+-------------+-----------+-----------+-----------+-----------+\n| Umbrella    | 417       | 224       | 379       | 611       |\n| SleepingBag | 800       | 936       | 93        | 875       |\n+-------------+-----------+-----------+-----------+-----------+\n输出:\n+-------------+-----------+-------+\n| product     | quarter   | sales |\n+-------------+-----------+-------+\n| Umbrella    | quarter_1 | 417   |\n| SleepingBag | quarter_1 | 800   |\n| Umbrella    | quarter_2 | 224   |\n| SleepingBag | quarter_2 | 936   |\n| Umbrella    | quarter_3 | 379   |\n| SleepingBag | quarter_3 | 93    |\n| Umbrella    | quarter_4 | 611   |\n| SleepingBag | quarter_4 | 875   |\n+-------------+-----------+-------+\n解释:\nDataFrame 已从宽格式重塑为长格式。每一行表示一个季度内产品的销售情况。\n
\n", "isPaidOnly": false, "difficulty": "Easy", "likes": 1, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}", "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef meltTable(report: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"1.1K\", \"totalSubmission\": \"1.4K\", \"totalAcceptedRaw\": 1094, \"totalSubmissionRaw\": 1363, \"acRate\": \"80.3%\"}", "hints": [ "Consider using a built-in function in pandas library to transform the data" ], "solution": null, "status": null, "sampleTestCase": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}", "metaData": "{\n \"pythondata\": [\n \"report = pd.DataFrame([], columns=['product', 'quarter_1', 'quarter_2', 'quarter_3', 'quarter_4']).astype({'product':'object', 'quarter_1':'Int64', 'quarter_2':'Int64', 'quarter_3':'Int64', 'quarter_4':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"meltTable\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "envInfo": "{\"pythondata\":[\"Pandas\",\"

Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}", "__typename": "QuestionNode" } } }