{ "data": { "question": { "questionId": "3070", "questionFrontendId": "2887", "categoryTitle": "pandas", "boundTopicId": 2467496, "title": "Fill Missing Data", "titleSlug": "fill-missing-data", "content": "
\nDataFrame products\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| name        | object |\n| quantity    | int    |\n| price       | int    |\n+-------------+--------+\n
\n\n

Write a solution to fill in the missing value as 0 in the quantity column.

\n\n

The result format is in the following example.

\n\n

 

\n
\nExample 1:\nInput:+-----------------+----------+-------+\n| name            | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch      | None     | 135   |\n| WirelessEarbuds | None     | 821   |\n| GolfClubs       | 779      | 9319  |\n| Printer         | 849      | 3051  |\n+-----------------+----------+-------+\nOutput:\n+-----------------+----------+-------+\n| name            | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch      | 0        | 135   |\n| WirelessEarbuds | 0        | 821   |\n| GolfClubs       | 779      | 9319  |\n| Printer         | 849      | 3051  |\n+-----------------+----------+-------+\nExplanation: \nThe quantity for Wristwatch and WirelessEarbuds are filled by 0.
\n", "translatedTitle": "填充缺失值", "translatedContent": "
\nDataFrame products\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| name        | object |\n| quantity    | int    |\n| price       | int    |\n+-------------+--------+\n
\n\n

编写一个解决方案,在 quantity 列中将缺失的值填充为 0

\n\n

返回结果如下示例所示。

\n\n

 

\n示例 1:\n\n
\n输入:\n+-----------------+----------+-------+\n| name            | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch      | 32       | 135   |\n| WirelessEarbuds | None     | 821   |\n| GolfClubs       | None     | 9319  |\n| Printer         | 849      | 3051  |\n+-----------------+----------+-------+\n输出:\n+-----------------+----------+-------+\n| name            | quantity | price |\n+-----------------+----------+-------+\n| Wristwatch      | 32       | 135   |\n| WirelessEarbuds | 0        | 821   |\n| GolfClubs       | 0        | 9319  |\n| Printer         | 849      | 3051  |\n+-----------------+----------+-------+\n解释:\nToaster 和 Headphones 的数量被填充为 0。
\n", "isPaidOnly": false, "difficulty": "Easy", "likes": 0, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}", "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef fillMissingValues(products: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"1.3K\", \"totalSubmission\": \"1.8K\", \"totalAcceptedRaw\": 1276, \"totalSubmissionRaw\": 1821, \"acRate\": \"70.1%\"}", "hints": [ "Consider using a build-in function in pandas library to fill the missing values of specified columns." ], "solution": null, "status": null, "sampleTestCase": "{\"headers\":{\"products\":[\"name\",\"quantity\",\"price\"]},\"rows\":{\"products\":[[\"Wristwatch\",null,135],[\"WirelessEarbuds\",null,821],[\"GolfClubs\",779,9319],[\"Printer\",849,3051]]}}", "metaData": "{\n \"pythondata\": [\n \"products = pd.DataFrame([], columns=['name', 'quantity', 'price']).astype({'name':'object', 'quantity':'Int64', 'price':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"fillMissingValues\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "envInfo": "{\"pythondata\":[\"Pandas\",\"

Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "{\"headers\":{\"products\":[\"name\",\"quantity\",\"price\"]},\"rows\":{\"products\":[[\"Wristwatch\",null,135],[\"WirelessEarbuds\",null,821],[\"GolfClubs\",779,9319],[\"Printer\",849,3051]]}}", "__typename": "QuestionNode" } } }