{ "data": { "question": { "questionId": "3062", "questionFrontendId": "2877", "categoryTitle": "pandas", "boundTopicId": 2467481, "title": "Create a DataFrame from List", "titleSlug": "create-a-dataframe-from-list", "content": "
Write a solution to create a DataFrame from a 2D list called student_data
. This 2D list contains the IDs and ages of some students.
The DataFrame should have two columns, student_id
and age
, and be in the same order as the original 2D list.
The result format is in the following example.
\n\n\n
Example 1:
\n\n\nInput:\nstudent_data:\n\n", "translatedTitle": "从表中创建 DataFrame", "translatedContent": "[\n [1, 15],\n [2, 11],\n [3, 11],\n [4, 20]\n]
\nOutput:\n+------------+-----+\n| student_id | age |\n+------------+-----+\n| 1 | 15 |\n| 2 | 11 |\n| 3 | 11 |\n| 4 | 20 |\n+------------+-----+\nExplanation:\nA DataFrame was created on top of student_data, with two columns namedstudent_id
andage
.\n
编写一个解决方案,基于名为 student_data
的二维列表 创建 一个 DataFrame 。这个二维列表包含一些学生的 ID 和年龄信息。
DataFrame 应该有两列, student_id
和 age
,并且与原始二维列表的顺序相同。
返回结果格式如下示例所示。
\n\n\n\n
示例 1:
\n\n\n输入:\nstudent_data:\n[\n [1, 15],\n [2, 11],\n [3, 11],\n [4, 20]\n]
\n输出:\n+------------+-----+\n| student_id | age |\n+------------+-----+\n| 1 | 15 |\n| 2 | 11 |\n| 3 | 11 |\n| 4 | 20 |\n+------------+-----+\n解释:\n基于 student_data 创建了一个 DataFrame,包含 student_id 和 age 两列。\n
\n",
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 1,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef createDataframe(student_data: List[List[int]]) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"2.5K\", \"totalSubmission\": \"3.3K\", \"totalAcceptedRaw\": 2493, \"totalSubmissionRaw\": 3266, \"acRate\": \"76.3%\"}",
"hints": [
"Consider using a built-in function in pandas library and specifying the column names within it."
],
"solution": null,
"status": null,
"sampleTestCase": "[[1,15],[2,11],[3,11],[4,20]]",
"metaData": "{\n \"name\": \"create_a_dataframe\",\n \"params\": [\n {\n \"name\": \"student_data\",\n \"type\": \"listPython 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "[[1,15],[2,11],[3,11],[4,20]]", "__typename": "QuestionNode" } } }