{ "data": { "question": { "questionId": "1751", "questionFrontendId": "1629", "boundTopicId": null, "title": "Slowest Key", "titleSlug": "slowest-key", "content": "
A newly designed keypad was tested, where a tester pressed a sequence of n
keys, one at a time.
You are given a string keysPressed
of length n
, where keysPressed[i]
was the ith
key pressed in the testing sequence, and a sorted list releaseTimes
, where releaseTimes[i]
was the time the ith
key was released. Both arrays are 0-indexed. The 0th
key was pressed at the time 0
, and every subsequent key was pressed at the exact time the previous key was released.
The tester wants to know the key of the keypress that had the longest duration. The ith
keypress had a duration of releaseTimes[i] - releaseTimes[i - 1]
, and the 0th
keypress had a duration of releaseTimes[0]
.
Note that the same key could have been pressed multiple times during the test, and these multiple presses of the same key may not have had the same duration.
\n\nReturn the key of the keypress that had the longest duration. If there are multiple such keypresses, return the lexicographically largest key of the keypresses.
\n\n\n
Example 1:
\n\n\nInput: releaseTimes = [9,29,49,50], keysPressed = "cbcd"\nOutput: "c"\nExplanation: The keypresses were as follows:\nKeypress for 'c' had a duration of 9 (pressed at time 0 and released at time 9).\nKeypress for 'b' had a duration of 29 - 9 = 20 (pressed at time 9 right after the release of the previous character and released at time 29).\nKeypress for 'c' had a duration of 49 - 29 = 20 (pressed at time 29 right after the release of the previous character and released at time 49).\nKeypress for 'd' had a duration of 50 - 49 = 1 (pressed at time 49 right after the release of the previous character and released at time 50).\nThe longest of these was the keypress for 'b' and the second keypress for 'c', both with duration 20.\n'c' is lexicographically larger than 'b', so the answer is 'c'.\n\n\n
Example 2:
\n\n\nInput: releaseTimes = [12,23,36,46,62], keysPressed = "spuda"\nOutput: "a"\nExplanation: The keypresses were as follows:\nKeypress for 's' had a duration of 12.\nKeypress for 'p' had a duration of 23 - 12 = 11.\nKeypress for 'u' had a duration of 36 - 23 = 13.\nKeypress for 'd' had a duration of 46 - 36 = 10.\nKeypress for 'a' had a duration of 62 - 46 = 16.\nThe longest of these was the keypress for 'a' with duration 16.\n\n
\n
Constraints:
\n\nreleaseTimes.length == n
keysPressed.length == n
2 <= n <= 1000
1 <= releaseTimes[i] <= 109
releaseTimes[i] < releaseTimes[i+1]
keysPressed
contains only lowercase English letters.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.