{ "data": { "question": { "questionId": "2012", "questionFrontendId": "1882", "boundTopicId": null, "title": "Process Tasks Using Servers", "titleSlug": "process-tasks-using-servers", "content": "

You are given two 0-indexed integer arrays servers and tasks of lengths n​​​​​​ and m​​​​​​ respectively. servers[i] is the weight of the i​​​​​​th​​​​ server, and tasks[j] is the time needed to process the j​​​​​​th​​​​ task in seconds.

\n\n

Tasks are assigned to the servers using a task queue. Initially, all servers are free, and the queue is empty.

\n\n

At second j, the jth task is inserted into the queue (starting with the 0th task being inserted at second 0). As long as there are free servers and the queue is not empty, the task in the front of the queue will be assigned to a free server with the smallest weight, and in case of a tie, it is assigned to a free server with the smallest index.

\n\n

If there are no free servers and the queue is not empty, we wait until a server becomes free and immediately assign the next task. If multiple servers become free at the same time, then multiple tasks from the queue will be assigned in order of insertion following the weight and index priorities above.

\n\n

A server that is assigned task j at second t will be free again at second t + tasks[j].

\n\n

Build an array ans​​​​ of length m, where ans[j] is the index of the server the j​​​​​​th task will be assigned to.

\n\n

Return the array ans​​​​.

\n\n

 

\n

Example 1:

\n\n
\nInput: servers = [3,3,2], tasks = [1,2,3,2,1,2]\nOutput: [2,2,0,2,1,2]\nExplanation: Events in chronological order go as follows:\n- At second 0, task 0 is added and processed using server 2 until second 1.\n- At second 1, server 2 becomes free. Task 1 is added and processed using server 2 until second 3.\n- At second 2, task 2 is added and processed using server 0 until second 5.\n- At second 3, server 2 becomes free. Task 3 is added and processed using server 2 until second 5.\n- At second 4, task 4 is added and processed using server 1 until second 5.\n- At second 5, all servers become free. Task 5 is added and processed using server 2 until second 7.
\n\n

Example 2:

\n\n
\nInput: servers = [5,1,4,3,2], tasks = [2,1,2,4,5,2,1]\nOutput: [1,4,1,4,1,3,2]\nExplanation: Events in chronological order go as follows: \n- At second 0, task 0 is added and processed using server 1 until second 2.\n- At second 1, task 1 is added and processed using server 4 until second 2.\n- At second 2, servers 1 and 4 become free. Task 2 is added and processed using server 1 until second 4. \n- At second 3, task 3 is added and processed using server 4 until second 7.\n- At second 4, server 1 becomes free. Task 4 is added and processed using server 1 until second 9. \n- At second 5, task 5 is added and processed using server 3 until second 7.\n- At second 6, task 6 is added and processed using server 2 until second 7.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 544, "dislikes": 161, "isLiked": null, "similarQuestions": "[{\"title\": \"Parallel Courses III\", \"titleSlug\": \"parallel-courses-iii\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "[3,3,2]\n[1,2,3,2,1,2]\n[5,1,4,3,2]\n[2,1,2,4,5,2,1]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Heap (Priority Queue)", "slug": "heap-priority-queue", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n vector assignTasks(vector& servers, vector& tasks) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int[] assignTasks(int[] servers, int[] tasks) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def assignTasks(self, servers, tasks):\n \"\"\"\n :type servers: List[int]\n :type tasks: List[int]\n :rtype: List[int]\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def assignTasks(self, servers: List[int], tasks: List[int]) -> List[int]:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\n/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nint* assignTasks(int* servers, int serversSize, int* tasks, int tasksSize, int* returnSize){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int[] AssignTasks(int[] servers, int[] tasks) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} servers\n * @param {number[]} tasks\n * @return {number[]}\n */\nvar assignTasks = function(servers, tasks) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} servers\n# @param {Integer[]} tasks\n# @return {Integer[]}\ndef assign_tasks(servers, tasks)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func assignTasks(_ servers: [Int], _ tasks: [Int]) -> [Int] {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func assignTasks(servers []int, tasks []int) []int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def assignTasks(servers: Array[Int], tasks: Array[Int]): Array[Int] = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun assignTasks(servers: IntArray, tasks: IntArray): IntArray {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn assign_tasks(servers: Vec, tasks: Vec) -> Vec {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $servers\n * @param Integer[] $tasks\n * @return Integer[]\n */\n function assignTasks($servers, $tasks) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function assignTasks(servers: number[], tasks: number[]): number[] {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (assign-tasks servers tasks)\n (-> (listof exact-integer?) (listof exact-integer?) (listof exact-integer?))\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec assign_tasks(Servers :: [integer()], Tasks :: [integer()]) -> [integer()].\nassign_tasks(Servers, Tasks) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec assign_tasks(servers :: [integer], tasks :: [integer]) :: [integer]\n def assign_tasks(servers, tasks) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"16.1K\", \"totalSubmission\": \"43.4K\", \"totalAcceptedRaw\": 16104, \"totalSubmissionRaw\": 43438, \"acRate\": \"37.1%\"}", "hints": [ "You can maintain a Heap of available Servers and a Heap of unavailable servers", "Note that the tasks will be processed in the input order so you just need to find the x-th server that will be available according to the rules" ], "solution": null, "status": null, "sampleTestCase": "[3,3,2]\n[1,2,3,2,1,2]", "metaData": "{\n \"name\": \"assignTasks\",\n \"params\": [\n {\n \"name\": \"servers\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"tasks\"\n }\n ],\n \"return\": {\n \"type\": \"integer[]\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }