{ "data": { "question": { "questionId": "2265", "questionFrontendId": "2161", "boundTopicId": null, "title": "Partition Array According to Given Pivot", "titleSlug": "partition-array-according-to-given-pivot", "content": "
You are given a 0-indexed integer array nums
and an integer pivot
. Rearrange nums
such that the following conditions are satisfied:
pivot
appears before every element greater than pivot
.pivot
appears in between the elements less than and greater than pivot
.pivot
and the elements greater than pivot
is maintained.\n\tpi
, pj
where pi
is the new position of the ith
element and pj
is the new position of the jth
element. For elements less than pivot
, if i < j
and nums[i] < pivot
and nums[j] < pivot
, then pi < pj
. Similarly for elements greater than pivot
, if i < j
and nums[i] > pivot
and nums[j] > pivot
, then pi < pj
.Return nums
after the rearrangement.
\n
Example 1:
\n\n\nInput: nums = [9,12,5,10,14,3,10], pivot = 10\nOutput: [9,5,3,10,10,12,14]\nExplanation: \nThe elements 9, 5, and 3 are less than the pivot so they are on the left side of the array.\nThe elements 12 and 14 are greater than the pivot so they are on the right side of the array.\nThe relative ordering of the elements less than and greater than pivot is also maintained. [9, 5, 3] and [12, 14] are the respective orderings.\n\n\n
Example 2:
\n\n\nInput: nums = [-3,4,3,2], pivot = 2\nOutput: [-3,2,4,3]\nExplanation: \nThe element -3 is less than the pivot so it is on the left side of the array.\nThe elements 4 and 3 are greater than the pivot so they are on the right side of the array.\nThe relative ordering of the elements less than and greater than pivot is also maintained. [-3] and [4, 3] are the respective orderings.\n\n\n
\n
Constraints:
\n\n1 <= nums.length <= 105
-106 <= nums[i] <= 106
pivot
equals to an element of nums
.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.