{ "data": { "question": { "questionId": "838", "questionFrontendId": "707", "boundTopicId": null, "title": "Design Linked List", "titleSlug": "design-linked-list", "content": "
Design your implementation of the linked list. You can choose to use a singly or doubly linked list.
\nA node in a singly linked list should have two attributes: val
and next
. val
is the value of the current node, and next
is a pointer/reference to the next node.
\nIf you want to use the doubly linked list, you will need one more attribute prev
to indicate the previous node in the linked list. Assume all nodes in the linked list are 0-indexed.
Implement the MyLinkedList
class:
MyLinkedList()
Initializes the MyLinkedList
object.int get(int index)
Get the value of the indexth
node in the linked list. If the index is invalid, return -1
.void addAtHead(int val)
Add a node of value val
before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.void addAtTail(int val)
Append a node of value val
as the last element of the linked list.void addAtIndex(int index, int val)
Add a node of value val
before the indexth
node in the linked list. If index
equals the length of the linked list, the node will be appended to the end of the linked list. If index
is greater than the length, the node will not be inserted.void deleteAtIndex(int index)
Delete the indexth
node in the linked list, if the index is valid.\n
Example 1:
\n\n\nInput\n["MyLinkedList", "addAtHead", "addAtTail", "addAtIndex", "get", "deleteAtIndex", "get"]\n[[], [1], [3], [1, 2], [1], [1], [1]]\nOutput\n[null, null, null, null, 2, null, 3]\n\nExplanation\nMyLinkedList myLinkedList = new MyLinkedList();\nmyLinkedList.addAtHead(1);\nmyLinkedList.addAtTail(3);\nmyLinkedList.addAtIndex(1, 2); // linked list becomes 1->2->3\nmyLinkedList.get(1); // return 2\nmyLinkedList.deleteAtIndex(1); // now the linked list is 1->3\nmyLinkedList.get(1); // return 3\n\n\n
\n
Constraints:
\n\n0 <= index, val <= 1000
2000
calls will be made to get
, addAtHead
, addAtTail
, addAtIndex
and deleteAtIndex
.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.