给你一个偶数 n
,已知存在一个长度为 n
的排列 perm
,其中 perm[i] == i
(下标 从 0 开始 计数)。
一步操作中,你将创建一个新数组 arr
,对于每个 i
:
i % 2 == 0
,那么 arr[i] = perm[i / 2]
i % 2 == 1
,那么 arr[i] = perm[n / 2 + (i - 1) / 2]
然后将 arr
赋值给 perm
。
要想使 perm
回到排列初始值,至少需要执行多少步操作?返回最小的 非零 操作步数。
示例 1:
输入:n = 2 输出:1 解释:最初,perm = [0,1] 第 1 步操作后,perm = [0,1] 所以,仅需执行 1 步操作
示例 2:
输入:n = 4 输出:2 解释:最初,perm = [0,1,2,3] 第 1 步操作后,perm = [0,2,1,3] 第 2 步操作后,perm = [0,1,2,3] 所以,仅需执行 2 步操作
示例 3:
输入:n = 6 输出:4
提示:
2 <= n <= 1000
n
是一个偶数