{ "data": { "question": { "questionId": "2161", "questionFrontendId": "2034", "boundTopicId": null, "title": "Stock Price Fluctuation ", "titleSlug": "stock-price-fluctuation", "content": "
You are given a stream of records about a particular stock. Each record contains a timestamp and the corresponding price of the stock at that timestamp.
\n\nUnfortunately due to the volatile nature of the stock market, the records do not come in order. Even worse, some records may be incorrect. Another record with the same timestamp may appear later in the stream correcting the price of the previous wrong record.
\n\nDesign an algorithm that:
\n\nImplement the StockPrice
class:
StockPrice()
Initializes the object with no price records.void update(int timestamp, int price)
Updates the price
of the stock at the given timestamp
.int current()
Returns the latest price of the stock.int maximum()
Returns the maximum price of the stock.int minimum()
Returns the minimum price of the stock.\n
Example 1:
\n\n\nInput\n["StockPrice", "update", "update", "current", "maximum", "update", "maximum", "update", "minimum"]\n[[], [1, 10], [2, 5], [], [], [1, 3], [], [4, 2], []]\nOutput\n[null, null, null, 5, 10, null, 5, null, 2]\n\nExplanation\nStockPrice stockPrice = new StockPrice();\nstockPrice.update(1, 10); // Timestamps are [1] with corresponding prices [10].\nstockPrice.update(2, 5); // Timestamps are [1,2] with corresponding prices [10,5].\nstockPrice.current(); // return 5, the latest timestamp is 2 with the price being 5.\nstockPrice.maximum(); // return 10, the maximum price is 10 at timestamp 1.\nstockPrice.update(1, 3); // The previous timestamp 1 had the wrong price, so it is updated to 3.\n // Timestamps are [1,2] with corresponding prices [3,5].\nstockPrice.maximum(); // return 5, the maximum price is 5 after the correction.\nstockPrice.update(4, 2); // Timestamps are [1,2,4] with corresponding prices [3,5,2].\nstockPrice.minimum(); // return 2, the minimum price is 2 at timestamp 4.\n\n\n
\n
Constraints:
\n\n1 <= timestamp, price <= 109
105
calls will be made in total to update
, current
, maximum
, and minimum
.current
, maximum
, and minimum
will be called only after update
has been called at least once.Compiled with clang 11
using the latest C++ 17 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \" OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu99 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\\r\\n\\r\\n
Your code is compiled with debug flag enabled (/debug
).
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.17.6
.
Support https://godoc.org/github.com/emirpasic/gods library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.3.10
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 4.5.4, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2020 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.