{
"data": {
"question": {
"questionId": "3177",
"questionFrontendId": "2892",
"boundTopicId": null,
"title": "Minimizing Array After Replacing Pairs With Their Product",
"titleSlug": "minimizing-array-after-replacing-pairs-with-their-product",
"content": null,
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": true,
"difficulty": "Medium",
"likes": 4,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"exampleTestcases": "[2,3,3,7,3,5]\n20\n[3,3,3,3]\n6",
"categoryTitle": "Algorithms",
"contributors": [],
"topicTags": [],
"companyTagStats": null,
"codeSnippets": null,
"stats": "{\"totalAccepted\": \"21\", \"totalSubmission\": \"39\", \"totalAcceptedRaw\": 21, \"totalSubmissionRaw\": 39, \"acRate\": \"53.8%\"}",
"hints": [
"If there is a zero in the array, then the answer would be 1
.",
"Merge all adjacent ones (since 1 * 1 = 1
and k >= 1
).",
"Let dp[i]
be the answer to the problem for the first i
elements.",
"To calculate dp[i]
, try to brute-force all indices j
such that elements from j
to i
are merged together to create a new element.",
"For a fixed i
, you could go backward from ith
elements and multiply them together until the product is at most k
. Now if you are currently on index j
and you've merged all elements from jth
element to ith
element, dp[i] = min(dp[i], dp[j - 1] + 1)
.",
"The above backward moving can be done at most 2 * log2(k)
times. Since we've merged adjacent ones, every two adjacent elements have a product of at least 2
.",
"So the total time complexity would be n * 2 * log2(k)
."
],
"solution": null,
"status": null,
"sampleTestCase": "[2,3,3,7,3,5]\n20",
"metaData": "{\n \"name\": \"minArrayLength\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": true,
"envInfo": "{\"cpp\": [\"C++\", \"
Compiled with clang 11
using the latest C++ 20 standard.
Your code is compiled with level two optimization (-O2
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\"], \"java\": [\"Java\", \"OpenJDK 17
. Java 8 features such as lambda expressions and stream API can be used.
Most standard library headers are already included automatically for your convenience.
\\r\\nIncludes Pair
class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.
Python 2.7.12
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\\r\\n\\r\\nNote that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.
\"], \"c\": [\"C\", \"Compiled with gcc 8.2
using the gnu11 standard.
Your code is compiled with level one optimization (-O1
). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.
Most standard library headers are already included automatically for your convenience.
\\r\\n\\r\\nFor hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:
\\r\\n\\r\\n1. Adding an item to a hash.\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
2. Looking up an item in a hash:\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n\\r\\n\\r\\n\\r\\n
3. Deleting an item in a hash:\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n\\r\\n\"], \"csharp\": [\"C#\", \"\"], \"javascript\": [\"JavaScript\", \"
Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES6 features.
lodash.js library is included by default.
\\r\\n\\r\\nFor Priority Queue / Queue data structures, you may use 5.3.0 version of datastructures-js/priority-queue and 4.2.1 version of datastructures-js/queue.
\"], \"ruby\": [\"Ruby\", \"Ruby 3.1
Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms
\"], \"swift\": [\"Swift\", \"Swift 5.5.2
.
Go 1.18
Support https://godoc.org/github.com/emirpasic/gods@v1.18.1 library.
\"], \"python3\": [\"Python3\", \"Python 3.10
.
Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.
\\r\\n\\r\\nFor Map/TreeMap data structure, you may use sortedcontainers library.
\"], \"scala\": [\"Scala\", \"Scala 2.13.7
.
Kotlin 1.9.0
.
Rust 1.58.1
Supports rand v0.6\\u00a0from crates.io
\"], \"php\": [\"PHP\", \"PHP 8.1
.
With bcmath module
\"], \"typescript\": [\"Typescript\", \"TypeScript 5.1.6, Node.js 16.13.2
.
Your code is run with --harmony
flag, enabling new ES2022 features.
lodash.js library is included by default.
\"], \"racket\": [\"Racket\", \"Run with Racket 8.3
.
Dart 2.17.3
\\r\\n\\r\\nYour code will be run directly without compiling
\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }