{ "data": { "question": { "questionId": "2418", "questionFrontendId": "2333", "boundTopicId": null, "title": "Minimum Sum of Squared Difference", "titleSlug": "minimum-sum-of-squared-difference", "content": "

You are given two positive 0-indexed integer arrays nums1 and nums2, both of length n.

\n\n

The sum of squared difference of arrays nums1 and nums2 is defined as the sum of (nums1[i] - nums2[i])2 for each 0 <= i < n.

\n\n

You are also given two positive integers k1 and k2. You can modify any of the elements of nums1 by +1 or -1 at most k1 times. Similarly, you can modify any of the elements of nums2 by +1 or -1 at most k2 times.

\n\n

Return the minimum sum of squared difference after modifying array nums1 at most k1 times and modifying array nums2 at most k2 times.

\n\n

Note: You are allowed to modify the array elements to become negative integers.

\n\n

 

\n

Example 1:

\n\n
\nInput: nums1 = [1,2,3,4], nums2 = [2,10,20,19], k1 = 0, k2 = 0\nOutput: 579\nExplanation: The elements in nums1 and nums2 cannot be modified because k1 = 0 and k2 = 0. \nThe sum of square difference will be: (1 - 2)2 + (2 - 10)2 + (3 - 20)2 + (4 - 19)2 = 579.\n
\n\n

Example 2:

\n\n
\nInput: nums1 = [1,4,10,12], nums2 = [5,8,6,9], k1 = 1, k2 = 1\nOutput: 43\nExplanation: One way to obtain the minimum sum of square difference is: \n- Increase nums1[0] once.\n- Increase nums2[2] once.\nThe minimum of the sum of square difference will be: \n(2 - 5)2 + (4 - 8)2 + (10 - 7)2 + (12 - 9)2 = 43.\nNote that, there are other ways to obtain the minimum of the sum of square difference, but there is no way to obtain a sum smaller than 43.
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Medium", "likes": 255, "dislikes": 20, "isLiked": null, "similarQuestions": "[{\"title\": \"Minimum Absolute Sum Difference\", \"titleSlug\": \"minimum-absolute-sum-difference\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Partition Array Into Two Arrays to Minimize Sum Difference\", \"titleSlug\": \"partition-array-into-two-arrays-to-minimize-sum-difference\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "[1,2,3,4]\n[2,10,20,19]\n0\n0\n[1,4,10,12]\n[5,8,6,9]\n1\n1", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n long long minSumSquareDiff(vector& nums1, vector& nums2, int k1, int k2) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public long minSumSquareDiff(int[] nums1, int[] nums2, int k1, int k2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minSumSquareDiff(self, nums1, nums2, k1, k2):\n \"\"\"\n :type nums1: List[int]\n :type nums2: List[int]\n :type k1: int\n :type k2: int\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minSumSquareDiff(self, nums1: List[int], nums2: List[int], k1: int, k2: int) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\nlong long minSumSquareDiff(int* nums1, int nums1Size, int* nums2, int nums2Size, int k1, int k2){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public long MinSumSquareDiff(int[] nums1, int[] nums2, int k1, int k2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums1\n * @param {number[]} nums2\n * @param {number} k1\n * @param {number} k2\n * @return {number}\n */\nvar minSumSquareDiff = function(nums1, nums2, k1, k2) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums1\n# @param {Integer[]} nums2\n# @param {Integer} k1\n# @param {Integer} k2\n# @return {Integer}\ndef min_sum_square_diff(nums1, nums2, k1, k2)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minSumSquareDiff(_ nums1: [Int], _ nums2: [Int], _ k1: Int, _ k2: Int) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minSumSquareDiff(nums1 []int, nums2 []int, k1 int, k2 int) int64 {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minSumSquareDiff(nums1: Array[Int], nums2: Array[Int], k1: Int, k2: Int): Long = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minSumSquareDiff(nums1: IntArray, nums2: IntArray, k1: Int, k2: Int): Long {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn min_sum_square_diff(nums1: Vec, nums2: Vec, k1: i32, k2: i32) -> i64 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums1\n * @param Integer[] $nums2\n * @param Integer $k1\n * @param Integer $k2\n * @return Integer\n */\n function minSumSquareDiff($nums1, $nums2, $k1, $k2) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minSumSquareDiff(nums1: number[], nums2: number[], k1: number, k2: number): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (min-sum-square-diff nums1 nums2 k1 k2)\n (-> (listof exact-integer?) (listof exact-integer?) exact-integer? exact-integer? exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec min_sum_square_diff(Nums1 :: [integer()], Nums2 :: [integer()], K1 :: integer(), K2 :: integer()) -> integer().\nmin_sum_square_diff(Nums1, Nums2, K1, K2) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec min_sum_square_diff(nums1 :: [integer], nums2 :: [integer], k1 :: integer, k2 :: integer) :: integer\n def min_sum_square_diff(nums1, nums2, k1, k2) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"5.5K\", \"totalSubmission\": \"24.2K\", \"totalAcceptedRaw\": 5512, \"totalSubmissionRaw\": 24219, \"acRate\": \"22.8%\"}", "hints": [ "There is no difference between the purpose of k1 and k2. Adding +1 to one element in nums1 is same as performing -1 to one element in nums2, and vice versa.", "Reduce the sum of squared difference greedily. One operation of k should use the index that has the current maximum difference.", "Binary search the maximum difference for the final result." ], "solution": null, "status": null, "sampleTestCase": "[1,2,3,4]\n[2,10,20,19]\n0\n0", "metaData": "{\n \"name\": \"minSumSquareDiff\",\n \"params\": [\n {\n \"name\": \"nums1\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer[]\",\n \"name\": \"nums2\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k1\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k2\"\n }\n ],\n \"return\": {\n \"type\": \"long\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu11 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }