{ "data": { "question": { "questionId": "2711", "questionFrontendId": "2577", "categoryTitle": "Algorithms", "boundTopicId": 2130470, "title": "Minimum Time to Visit a Cell In a Grid", "titleSlug": "minimum-time-to-visit-a-cell-in-a-grid", "content": "
You are given a m x n
matrix grid
consisting of non-negative integers where grid[row][col]
represents the minimum time required to be able to visit the cell (row, col)
, which means you can visit the cell (row, col)
only when the time you visit it is greater than or equal to grid[row][col]
.
You are standing in the top-left cell of the matrix in the 0th
second, and you must move to any adjacent cell in the four directions: up, down, left, and right. Each move you make takes 1 second.
Return the minimum time required in which you can visit the bottom-right cell of the matrix. If you cannot visit the bottom-right cell, then return -1
.
\n
Example 1:
\n\n\n\n\nInput: grid = [[0,1,3,2],[5,1,2,5],[4,3,8,6]]\nOutput: 7\nExplanation: One of the paths that we can take is the following:\n- at t = 0, we are on the cell (0,0).\n- at t = 1, we move to the cell (0,1). It is possible because grid[0][1] <= 1.\n- at t = 2, we move to the cell (1,1). It is possible because grid[1][1] <= 2.\n- at t = 3, we move to the cell (1,2). It is possible because grid[1][2] <= 3.\n- at t = 4, we move to the cell (1,1). It is possible because grid[1][1] <= 4.\n- at t = 5, we move to the cell (1,2). It is possible because grid[1][2] <= 5.\n- at t = 6, we move to the cell (1,3). It is possible because grid[1][3] <= 6.\n- at t = 7, we move to the cell (2,3). It is possible because grid[2][3] <= 7.\nThe final time is 7. It can be shown that it is the minimum time possible.\n\n\n
Example 2:
\n\n\n\n\nInput: grid = [[0,2,4],[3,2,1],[1,0,4]]\nOutput: -1\nExplanation: There is no path from the top left to the bottom-right cell.\n\n\n
\n
Constraints:
\n\nm == grid.length
n == grid[i].length
2 <= m, n <= 1000
4 <= m * n <= 105
0 <= grid[i][j] <= 105
grid[0][0] == 0
\n\n", "translatedTitle": "在网格图中访问一个格子的最少时间", "translatedContent": "
给你一个 m x n
的矩阵 grid
,每个元素都为 非负 整数,其中 grid[row][col]
表示可以访问格子 (row, col)
的 最早 时间。也就是说当你访问格子 (row, col)
时,最少已经经过的时间为 grid[row][col]
。
你从 最左上角 出发,出发时刻为 0
,你必须一直移动到上下左右相邻四个格子中的 任意 一个格子(即不能停留在格子上)。每次移动都需要花费 1 单位时间。
请你返回 最早 到达右下角格子的时间,如果你无法到达右下角的格子,请你返回 -1
。
\n\n
示例 1:
\n\n\n\n\n输入:grid = [[0,1,3,2],[5,1,2,5],[4,3,8,6]]\n输出:7\n解释:一条可行的路径为:\n- 时刻 t = 0 ,我们在格子 (0,0) 。\n- 时刻 t = 1 ,我们移动到格子 (0,1) ,可以移动的原因是 grid[0][1] <= 1 。\n- 时刻 t = 2 ,我们移动到格子 (1,1) ,可以移动的原因是 grid[1][1] <= 2 。\n- 时刻 t = 3 ,我们移动到格子 (1,2) ,可以移动的原因是 grid[1][2] <= 3 。\n- 时刻 t = 4 ,我们移动到格子 (1,1) ,可以移动的原因是 grid[1][1] <= 4 。\n- 时刻 t = 5 ,我们移动到格子 (1,2) ,可以移动的原因是 grid[1][2] <= 5 。\n- 时刻 t = 6 ,我们移动到格子 (1,3) ,可以移动的原因是 grid[1][3] <= 6 。\n- 时刻 t = 7 ,我们移动到格子 (2,3) ,可以移动的原因是 grid[2][3] <= 7 。\n最终到达时刻为 7 。这是最早可以到达的时间。\n\n\n
示例 2:
\n\n\n\n\n输入:grid = [[0,2,4],[3,2,1],[1,0,4]]\n输出:-1\n解释:没法从左上角按题目规定走到右下角。\n\n\n
\n\n
提示:
\n\nm == grid.length
n == grid[i].length
2 <= m, n <= 1000
4 <= m * n <= 105
0 <= grid[i][j] <= 105
grid[0][0] == 0
\\u7248\\u672c\\uff1a \\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 \\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\"],\"java\":[\"Java\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u88ab\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5305\\u542b Pair \\u7c7b: https:\\/\\/docs.oracle.com\\/javase\\/8\\/javafx\\/api\\/javafx\\/util\\/Pair.html <\\/p>\"],\"python\":[\"Python\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982\\uff1aarray<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u6ce8\\u610f Python 2.7 \\u5c06\\u57282020\\u5e74\\u540e\\u4e0d\\u518d\\u7ef4\\u62a4<\\/a>\\u3002 \\u5982\\u60f3\\u4f7f\\u7528\\u6700\\u65b0\\u7248\\u7684Python\\uff0c\\u8bf7\\u9009\\u62e9Python 3\\u3002<\\/p>\"],\"c\":[\"C\",\" \\u7248\\u672c\\uff1a \\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528 \\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u60f3\\u4f7f\\u7528\\u54c8\\u5e0c\\u8868\\u8fd0\\u7b97, \\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 uthash<\\/a>\\u3002 \\\"uthash.h\\\"\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5bfc\\u5165\\u3002\\u8bf7\\u770b\\u5982\\u4e0b\\u793a\\u4f8b:<\\/p>\\r\\n\\r\\n 1. \\u5f80\\u54c8\\u5e0c\\u8868\\u4e2d\\u6dfb\\u52a0\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n 2. \\u5728\\u54c8\\u5e0c\\u8868\\u4e2d\\u67e5\\u627e\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n 3. \\u4ece\\u54c8\\u5e0c\\u8868\\u4e2d\\u5220\\u9664\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n C# 10<\\/a> \\u8fd0\\u884c\\u5728 .NET 6 \\u4e0a<\\/p>\"],\"javascript\":[\"JavaScript\",\" \\u7248\\u672c\\uff1a \\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u6267\\u884c\\u65f6\\u5c06\\u5e26\\u4e0a lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@5.3.0<\\/a> \\u548c datastructures-js\\/queue@4.2.1<\\/a>\\u3002<\\/p>\"],\"ruby\":[\"Ruby\",\" \\u4f7f\\u7528 \\u4e00\\u4e9b\\u5e38\\u7528\\u7684\\u6570\\u636e\\u7ed3\\u6784\\u5df2\\u5728 Algorithms \\u6a21\\u5757\\u4e2d\\u63d0\\u4f9b\\uff1ahttps:\\/\\/www.rubydoc.info\\/github\\/kanwei\\/algorithms\\/Algorithms<\\/p>\"],\"swift\":[\"Swift\",\" \\u7248\\u672c\\uff1a \\u6211\\u4eec\\u901a\\u5e38\\u4fdd\\u8bc1\\u66f4\\u65b0\\u5230 Apple\\u653e\\u51fa\\u7684\\u6700\\u65b0\\u7248Swift<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u53d1\\u73b0Swift\\u4e0d\\u662f\\u6700\\u65b0\\u7248\\u7684\\uff0c\\u8bf7\\u8054\\u7cfb\\u6211\\u4eec\\uff01\\u6211\\u4eec\\u5c06\\u5c3d\\u5feb\\u66f4\\u65b0\\u3002<\\/p>\"],\"golang\":[\"Go\",\" \\u7248\\u672c\\uff1a \\u652f\\u6301 https:\\/\\/godoc.org\\/github.com\\/emirpasic\\/gods@v1.18.1<\\/a> \\u7b2c\\u4e09\\u65b9\\u5e93\\u3002<\\/p>\"],\"python3\":[\"Python3\",\" \\u7248\\u672c\\uff1a \\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982array<\\/a>, bisect<\\/a>, collections<\\/a>\\u3002 \\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528 Map\\/TreeMap \\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 sortedcontainers<\\/a> \\u5e93\\u3002<\\/p>\"],\"scala\":[\"Scala\",\" \\u7248\\u672c\\uff1a \\u7248\\u672c\\uff1a \\u6211\\u4eec\\u4f7f\\u7528\\u7684\\u662f JetBrains \\u63d0\\u4f9b\\u7684 experimental compiler\\u3002\\u5982\\u679c\\u60a8\\u8ba4\\u4e3a\\u60a8\\u9047\\u5230\\u4e86\\u7f16\\u8bd1\\u5668\\u76f8\\u5173\\u7684\\u95ee\\u9898\\uff0c\\u8bf7\\u5411\\u6211\\u4eec\\u53cd\\u9988<\\/p>\"],\"rust\":[\"Rust\",\" \\u7248\\u672c\\uff1a \\u652f\\u6301 crates.io \\u7684 rand<\\/a><\\/p>\"],\"php\":[\"PHP\",\" With bcmath module.<\\/p>\"],\"typescript\":[\"TypeScript\",\" TypeScript 5.1.6<\\/p>\\r\\n\\r\\n Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022<\\/p>\\r\\n\\r\\n lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 datastructures-js\\/priority-queue@5.3.0<\\/a> \\u548c datastructures-js\\/queue@4.2.1<\\/a>\\u3002<\\/p>\"],\"racket\":[\"Racket\",\"clang 11<\\/code> \\u91c7\\u7528\\u6700\\u65b0C++ 20\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n
-O2<\\/code>\\u7ea7\\u4f18\\u5316\\u3002AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b
out-of-bounds<\\/code>\\u548c
use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n
OpenJDK 17<\\/code>\\u3002\\u53ef\\u4ee5\\u4f7f\\u7528Java 8\\u7684\\u7279\\u6027\\u4f8b\\u5982\\uff0clambda expressions \\u548c stream API\\u3002<\\/p>\\r\\n\\r\\n
Python 2.7.12<\\/code><\\/p>\\r\\n\\r\\n
GCC 8.2<\\/code>\\uff0c\\u91c7\\u7528GNU11\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n
-O1<\\/code>\\u7ea7\\u4f18\\u5316\\u3002 AddressSanitizer<\\/a>\\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b
out-of-bounds<\\/code>\\u548c
use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n
\\r\\nstruct hash_entry {\\r\\n int id; \\/* we'll use this field as the key *\\/\\r\\n char name[10];\\r\\n UT_hash_handle hh; \\/* makes this structure hashable *\\/\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n
\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n
\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\"],\"csharp\":[\"C#\",\"
Node.js 16.13.2<\\/code><\\/p>\\r\\n\\r\\n
--harmony<\\/code> \\u6807\\u8bb0\\u6765\\u5f00\\u542f \\u65b0\\u7248ES6\\u7279\\u6027<\\/a>\\u3002<\\/p>\\r\\n\\r\\n
Ruby 3.1<\\/code>\\u6267\\u884c<\\/p>\\r\\n\\r\\n
Swift 5.5.2<\\/code><\\/p>\\r\\n\\r\\n
Go 1.21<\\/code><\\/p>\\r\\n\\r\\n
Python 3.10<\\/code><\\/p>\\r\\n\\r\\n
Scala 2.13<\\/code><\\/p>\"],\"kotlin\":[\"Kotlin\",\"
Kotlin 1.9.0<\\/code><\\/p>\\r\\n\\r\\n
rust 1.58.1<\\/code><\\/p>\\r\\n\\r\\n
PHP 8.1<\\/code>.<\\/p>\\r\\n\\r\\n