{ "data": { "question": { "questionId": "3075", "questionFrontendId": "2883", "categoryTitle": "pandas", "boundTopicId": 2467491, "title": "Drop Missing Data", "titleSlug": "drop-missing-data", "content": "
\nDataFrame students\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n\n\n
There are some rows having missing values in the name
column.
Write a solution to remove the rows with missing values.
\n\nThe result format is in the following example.
\n\n\n
Example 1:
\n\n\nInput:\n+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 32 | Piper | 5 |\n| 217 | None | 19 |\n| 779 | Georgia | 20 |\n| 849 | Willow | 14 |\n+------------+---------+-----+\nOutput:\n+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 32 | Piper | 5 |\n| 779 | Georgia | 20 | \n| 849 | Willow | 14 | \n+------------+---------+-----+\nExplanation: \nStudent with id 217 havs empty value in the name column, so it will be removed.\n", "translatedTitle": "删去丢失的数据", "translatedContent": "
\nDataFrame students\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n\n\n
在 name
列里有一些具有缺失值的行。
编写一个解决方案,删除具有缺失值的行。
\n\n返回结果格式如下示例所示。
\n\n\n\n
示例 1:
\n\n\n输入:\n+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 32 | Piper | 5 |\n| 217 | None | 19 |\n| 779 | Georgia | 20 |\n| 849 | Willow | 14 |\n+------------+---------+-----+\n输出:\n+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 32 | Piper | 5 |\n| 779 | Georgia | 20 | \n| 849 | Willow | 14 | \n+------------+---------+-----+\n解释:\n学号为 217 的学生所在行在 name 列中有空值,因此这一行将被删除。\n", "isPaidOnly": false, "difficulty": "Easy", "likes": 0, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}", "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef dropMissingData(students: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"1.4K\", \"totalSubmission\": \"2.4K\", \"totalAcceptedRaw\": 1408, \"totalSubmissionRaw\": 2376, \"acRate\": \"59.3%\"}", "hints": [ "Consider using a build-in function in pandas library to remove the rows with missing values based on specified data." ], "solution": null, "status": null, "sampleTestCase": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[32,\"Piper\",5],[217,null,19],[779,\"Georgia\",20],[849,\"Willow\",14]]}}", "metaData": "{\n \"pythondata\": [\n \"students = pd.DataFrame([], columns=['student_id', 'name', 'age']).astype({'student_id':'Int64', 'name':'object', 'age':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"dropMissingData\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "envInfo": "{\"pythondata\":[\"Pandas\",\"
Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"students\":[[32,\"Piper\",5],[217,null,19],[779,\"Georgia\",20],[849,\"Willow\",14]]}}", "__typename": "QuestionNode" } } }