给你一个整数数组 cookies ,其中 cookies[i] 表示在第 i 个零食包中的饼干数量。另给你一个整数 k 表示等待分发零食包的孩子数量,所有 零食包都需要分发。在同一个零食包中的所有饼干都必须分发给同一个孩子,不能分开。

分发的 不公平程度 定义为单个孩子在分发过程中能够获得饼干的最大总数。

返回所有分发的最小不公平程度。

 

示例 1:

输入:cookies = [8,15,10,20,8], k = 2
输出:31
解释:一种最优方案是 [8,15,8] 和 [10,20] 。
- 第 1 个孩子分到 [8,15,8] ,总计 8 + 15 + 8 = 31 块饼干。
- 第 2 个孩子分到 [10,20] ,总计 10 + 20 = 30 块饼干。
分发的不公平程度为 max(31,30) = 31 。
可以证明不存在不公平程度小于 31 的分发方案。

示例 2:

输入:cookies = [6,1,3,2,2,4,1,2], k = 3
输出:7
解释:一种最优方案是 [6,1]、[3,2,2] 和 [4,1,2] 。
- 第 1 个孩子分到 [6,1] ,总计 6 + 1 = 7 块饼干。 
- 第 2 个孩子分到 [3,2,2] ,总计 3 + 2 + 2 = 7 块饼干。
- 第 3 个孩子分到 [4,1,2] ,总计 4 + 1 + 2 = 7 块饼干。
分发的不公平程度为 max(7,7,7) = 7 。
可以证明不存在不公平程度小于 7 的分发方案。

 

提示: